首页> 外文学位 >New stereoselective reactions to form amido alkyl C-N and vinyl triflate C-O bonds via carbocation intermediates & ultrafast silicon fluorination methodologies for applications in pet imaging.
【24h】

New stereoselective reactions to form amido alkyl C-N and vinyl triflate C-O bonds via carbocation intermediates & ultrafast silicon fluorination methodologies for applications in pet imaging.

机译:通过碳正离子中间体和超快硅氟化方法在宠物成像中形成酰胺基烷基C-N和三氟甲基丙烯酸C-O键的新的立体选择性反应。

获取原文
获取原文并翻译 | 示例

摘要

We report here the development of a Lewis acid catalyzed method for the dehydrative coupling of cyclic alcohols and nitriles to form amides with retention of configuration. By contrast, the formation of amides by nitrile trapping of carbocations (Ritter reaction) usually affords racemic product. The present reaction was accomplished by first converting alcohol starting materials to their corresponding chlorosulfites in situ. Even after an extensive search, only copper (II) salts were able to produce the desired conversion of these chlorosulfites to amides though with low catalytic turnover. Improving the turnover without deteriorating the stereochemical outcome was eventually accomplished by a careful selection of the reagent addition sequence and through the removal of gaseous byproducts. This Ritter-like coupling reaction proceeds in good yields with secondary cyclic alcohols under mild conditions. The stereochemical outcome is likely due to fast nucleophilic capture of a non-planar carbocations (hyperconjomers) stabilized by ring hyperconjugation.;In a second project, we demonstrate that TMSOTf in the presence of several metal catalysts converts alkynes to vinyl triflates under mild conditions. Current methods for the formation of vinyl triflates directly from alkynes generally involve harsh conditions and are exclusively selective for the E-isomer. Further study and optimization revealed that internal alkynes are converted to the Z-vinyl triflate product though with modest selectivity. The reaction efficiently converts aliphatic and aromatic terminal alkynes as well as internal alkynes to their corresponding vinyl triflate products. A mechanism is put forward to explain the unique role of silicon in this system. In this mechanism, we propose a silyl vinyl triflate intermediate that undergoes protodesilylation to afford the vinyl triflate product. Importantly, we believe that silicon may play a similar role in other recently reported reactions.;In a final project pursued in collaboration with NIH researchers, we describe our development of ultrafast silicon fluorination techniques for eventual applications in PET. The demand for physiologically stable organosilicon 18F-fluorides required compounds with a high degree of steric hindrance at the silicon center. This in turn greatly slows the rate of fluorination using current methods which often entail high temperatures and very polar solvents. Our initial solution to this problem centered on the use of metal chelating units attached to silicon substrates to serve as leaving groups. We reasoned that such leaving groups would stabilize negative charge developed on the silicon center in the TS and thus lead to a faster fluorination. Using these leaving groups, we observed fast radiofluorination of bulky silicon substrates at room temperature in 15 minutes without the need for the commonly used phase transfer reagents. Similar rate enhancements were also observed with cyclotron-produced 18F-fluoride (t1/2 = 109.7 min, beta+ = 97%). Based on our proposed mechanism for fluorination rate enhancement with chelating leaving groups, we reasoned that similar results could be achieved even without first attaching a chelating leaving group to a silicon center. As a result, we developed the concept of a Crown Ether Nucleophilic Catalyst (CENC). The use of these new phase transfer agents allows for efficient sequestration and recovery of cyclotron-derived K18F. Using these CENC/K18F complexes, we observed rapid radiofluorination of silicon substrates (5 min) which is significantly faster than currently reported methods.
机译:我们在这里报告了路易斯酸催化方法的发展,该方法用于环醇和腈的脱水偶联以形成具有构型保留的酰胺。相反,通过腈捕获碳阳离子(里特反应)形成酰胺通常可得到外消旋产物。通过首先将醇原料原位转化为其相应的亚氯酸来完成本反应。即使进行了广泛的搜索,尽管催化转化率较低,但只有铜(II)盐仍能够将这些氯亚硫酸盐转化为酰胺。最终,通过仔细选择试剂添加顺序并去除气态副产物,可以在不降低立体化学结果的前提下提高周转率。在温和条件下,与仲环状醇的类Ritter偶合反应产率很高。立体化学结果可能是由于通过环超共轭稳定的非平面碳正离子(超高聚物)的快速亲核捕获。在第二个项目中,我们证明了TMSOTf在几种金属催化剂存在下在温和条件下将炔烃转化为乙烯基三氟甲磺酸酯。直接从炔烃形成乙烯基三氟甲磺酸酯的当前方法通常涉及苛刻条件,并且仅对E​​-异构体具有选择性。进一步的研究和优化表明,尽管内部炔烃具有适度的选择性,但它们仍可以转化为Z-乙烯基三氟甲磺酸酯产品。该反应有效地将脂族和芳族末端炔烃以及内部炔烃转化为其相应的三氟甲磺酸乙烯酯产物。提出了一种机制来解释硅在该系统中的独特作用。在这种机理中,我们提出了甲硅烷基乙烯基三氟甲磺酸酯中间体,该中间体经过原去甲硅烷基化反应得到三氟甲磺酸乙烯基酯产物。重要的是,我们认为硅可能在最近报道的其他反应中也起着类似的作用。;在与NIH研究人员合作进行的最终项目中,我们描述了超快硅氟化技术的发展,该技术将最终应用于PET。对生理上稳定的有机硅18F氟化物的需求要求在硅中心具有高度位阻的化合物。反过来,使用通常需要高温和极极性溶剂的现有方法,这大大降低了氟化速率。我们针对该问题的最初解决方案集中在使用附着在硅基板上作为离去基团的金属螯合单元上。我们认为,这样的离去基团将稳定在TS中硅中心上产生的负电荷,从而导致更快的氟化。使用这些离去基团,我们观察到室温下15分钟之内即可对庞大的硅基板进行快速的氟化,而无需使用常用的相转移试剂。用回旋加速器生产的18F氟化物也观察到了类似的速率提高(t1 / 2 = 109.7分钟,β+ = 97%)。基于我们提出的通过螯合离去基团提高氟化速率的机制,我们认为即使不先将螯合离去基团连接到硅中心也可以达到相似的结果。因此,我们开发了冠醚亲核催化剂(CENC)的概念。这些新的相转移剂的使用可有效隔离和回收回旋加速器衍生的K18F。使用这些CENC / K18F配合物,我们观察到了硅基质的快速放射性氟化(5分钟),这比目前报道的方法快得多。

著录项

  • 作者

    Alhuniti, Mohammed.;

  • 作者单位

    Florida Atlantic University.;

  • 授予单位 Florida Atlantic University.;
  • 学科 Organic chemistry.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 154 p.
  • 总页数 154
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号