首页> 外文学位 >Aqueous reaction kinetics and secondary organic aerosol formation from atmospheric phenol oxidation.
【24h】

Aqueous reaction kinetics and secondary organic aerosol formation from atmospheric phenol oxidation.

机译:大气酚氧化产生的水反应动力学和二次有机气溶胶。

获取原文
获取原文并翻译 | 示例

摘要

Organic aerosols (OA) are a dominant fraction of particulate mass in the atmosphere, and much is secondary in nature. Secondary organic aerosol (SOA) is formed in the atmosphere from volatile organic compound precursors. Traditional SOA formation pathways involve primarily gas-phase processes: Oxidation reactions of organic gases result in low-volatility products that condense to the particulate phase, increasing aerosol mass. However, in recent years heterogeneous processes, including aqueous reactions, have gained more attention as gas-phase processes often fail to accurately predict observed mass loadings of aerosol in the atmosphere. Aqueous SOA formation is the result of a volatile organic species partitioning to the aqueous phase (clouds, fogs, aqueous aerosols), where they are chemically converted into a non-volatile species that remains in the particulate phase upon water evaporation. In this work we explore the aqueous chemical reaction kinetics and the SOA formation potential of phenols, which are released in large quantities from biomass combustion.;Phenols are a broad class of organic compounds with intermediate volatilities (102 -- 106 microg m-3 at 20°C) and moderate to high Henry's Law Constants (103 -- 10 9M atm-1), indicating significant partitioning to atmospheric aqueous phases. We begin in chapters 2 and 3 by investigating the aqueous oxidation of the compounds phenol (compound with formula C6H 5OH), guaiacol (2-methoxyphenol), syringol (2,6-dimethoxyphenol), and three dihydroxybenzenes (catechol, resorcinol, hydroquinone). For each phenol we examined reactions with two oxidants: hydroxyl radical (*OH) and the triplet excited state of 3,4-dimethoxybenzaldehyde, which is also emitted from biomass combustion. Triplet excited states (3C*) have been widely studied in surface waters (oceans and lakes) but are a novel oxidation pathway in atmospheric aqueous phases. The precursors for triplet excited states are essentially brown carbon: organic molecules high amoutns of conjugation (or nitrogen hetero atoms) that can absorb solar radiation, resulting in an excited molecule with a high oxidative potential. We find that the 3C*-mediated aqueous oxidations of phenols are rapid and can dominate over *OH at low pH (< 5), with *OH becoming dominant as pH increases. Oxidation of phenols by •OH and 3C* both efficiently produce low-volatility products, with mass yields of aqueous SOA that approach unity.;In chapter 4 we expand our investigation to the aqueous chemistry of phenolic carbonyls, another major class of phenols. These compounds possess a carbonyl functional group in conjugation with the aromatic ring of a phenol. This conjugation allows these compounds to absorb large amounts solar radiation, and as a result their dominant aqueous sink is rapid direct photodegradation. We found that these compounds also form a triplet state that can oxidize non-carbonyl phenols. As in chapters 2 and 3, the direct photodegradation of phenolic carbonyls efficiently produces low-volatility compounds, with SOA mass yields ranging from 60%--120%.;Chapter 5 takes the reaction kinetic and SOA mass yield results from chapters 2-4 and combines them into a simple model comparing aqueous- and gas-phase SOA formation during a heavy biomass burning event in Bakersfield, CA. This model uses gas- and aqueous-phase concentrations of typical atmospheric oxidants (*OH, 3C*, ozone) and measured phenol concentrations for foggy or deliquesced aqueous aerosol water conditions. We find that under heavy biomass burning and foggy conditions, aqueous reactions are the dominant source of phenol-derived aerosol. Under aqueous aerosol conditions, the amounts of gas-phase and aqueous-phase SOA formed are comparable. Overall, this work demonstrates that aqueous-phase oxidation of phenols can be a significant source of aerosol mass during fog and cloud events, and suggests the same is true (though to a lower extent) within aqueous aerosols.
机译:有机气溶胶(OA)是大气中颗粒物质的主要组成部分,并且在自然界中很多是次要的。二次有机气溶胶(SOA)在大气中由挥发性有机化合物前体形成。传统的SOA形成途径主要涉及气相过程:有机气体的氧化反应会导致挥发性低的产物凝结成颗粒相,从而增加了气溶胶质量。然而,近年来,包括气相反应在内的非均相过程受到越来越多的关注,因为气相过程通常无法准确预测大气中气溶胶的质量负荷。 SOA水溶液的形成是挥发性有机物分配到水相(云,雾,水气溶胶)的结果,在有机相中它们被化学转化为不挥发的物质,在蒸发后仍保留在颗粒相中。在这项工作中,我们探索了从生物质燃烧中大量释放的苯酚的水化学反应动力学和SOA形成潜力;苯酚是一类广泛的有机化合物,具有中等挥发性(102-106 microg m-3 20°C)和中等至较高的亨利定律常数(103-10 9M atm-1),表明与大气水相有明显的分配。我们从第2章和第3章开始,研究化合物苯酚(与式C6H 5OH的化合物),愈创木酚(2-甲氧基苯酚),丁香酚(2,6-二甲氧基苯酚)和三种二羟基苯(儿茶酚,间苯二酚,对苯二酚)的水氧化。对于每种苯酚,我们检查了与两种氧化剂的反应:羟基自由基(* OH)和3,4-二甲氧基苯甲醛的三重激发态,后者也从生物质燃烧中释放出来。三重态激发态(3C *)已在地表水(海洋和湖泊)中得到广泛研究,但在大气水相中是一种新颖的氧化途径。三线态激发态的前体基本上是棕碳:有机分子具有高共轭量(或氮杂原子),可以吸收太阳辐射,从而产生具有高氧化电位的激发分子。我们发现,在低pH值(<5)下,由3C *介导的苯酚的水氧化反应迅速,并且可以在* OH上占主导地位,随着pH的增加,* OH占主导地位。 •OH和3C *氧化苯酚均能有效地生产低挥发性产品,SOA水溶液的质量产率接近1。在第4章中,我们将研究范围扩展到另一类主要的苯酚酚羰基的水化学。这些化合物具有与苯酚的芳环共轭的羰基官能团。这种共轭使这些化合物能够吸收大量的太阳辐射,结果,它们的主要水槽是快速直接的光降解。我们发现这些化合物还形成可以氧化非羰基酚的三重态。如第2章和第3章所述,酚醛羰基化合物的直接光降解有效地产生了低挥发性化合物,SOA的产率为60%-120%.;第5章采用反应动力学,而2-4章的结果为SOA的产率并将它们组合成一个简单的模型,比较在加利福尼亚州贝克斯菲尔德发生的大量生物质燃烧事件期间水相和气相SOA的形成。该模型使用典型的大气氧化剂(* OH,3C *,臭氧)的气相和水相浓度,以及在有雾或潮解的气溶胶水条件下测得的苯酚浓度。我们发现,在大量的生物质燃烧和有雾的条件下,水反应是苯酚衍生气溶胶的主要来源。在水雾条件下,形成的气相和水相SOA的量是可比的。总的来说,这项工作表明,在雾和云事件期间,酚的水相氧化可能是气溶胶质量的重要来源,并且表明在水性气溶胶中也是一样(尽管程度较低)。

著录项

  • 作者

    Smith, Jeremy Daniel.;

  • 作者单位

    University of California, Davis.;

  • 授予单位 University of California, Davis.;
  • 学科 Atmospheric chemistry.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 277 p.
  • 总页数 277
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号