首页> 外文学位 >Bottom-Up Approaches to Approximate Inference and Learning in Discrete Graphical Models.
【24h】

Bottom-Up Approaches to Approximate Inference and Learning in Discrete Graphical Models.

机译:在离散图形模型中从下至上的近似推理和学习方法。

获取原文
获取原文并翻译 | 示例

摘要

Probabilistic graphical models offer a convenient and compact way to describe complex and uncertain relationships in data. A graphical model defines a joint probability distribution over many random variables that factors over an underlying graph structure. Unfortunately, inference is generally intractable in graphical models which accurately describe the complex dependencies occurring in real data.;In this thesis, we focus on theory and algorithms for learning and approximate inference in graphical models. We propose and investigate a bottom-up approach to inference and learning, where we start with an initial, computationally cheap approximation and then improve upon the initial approximation through additional computation. We study the computation-accuracy trade-off inherent to the bottom-up approach in three different settings.;First, we consider the task of finding the most probable (MAP) configuration of a model. We focus on a class of graphical models corresponding to the weighted matching problem - a classic combinatorial optimization problem - and on MAP inference algorithms based on linear programming (LP) relaxations. In this setting, the optimum of the LP relaxation provides an upper bound on the MAP solution to the weighted matching problem that may be quite loose. We thus propose a bottom-up, cutting-plane algorithm which iteratively adds constraints that tighten the upper bound on the matching solution. We then derive a max-product belief propagation algorithm that provably solves the matching problem for certain choices of tightening constraints.;Second, we consider the task of computing the marginal probabilities of a model. Loopy Belief Propagation (BP) is an algorithm for obtaining marginal probability estimates by iteratively passing messages between neighboring nodes in a cyclic graphical model. Generalized Belief Propagation (GBP) is a class of approximate inference algorithms that builds upon Loopy BP by passing messages between clusters of nodes. GBP offers the promise to yield marginal estimates that are far more accurate than Loopy BP, but is also very sensitive to the choice of clusters used. We thus propose a criteria - tree-robustness - for choosing the collection of clusters used by GBP that is, in some sense, no worse than Loopy BP when the factors defining our model induce a tree. We propose a method to find a collection of clusters that are tree-robust and empirically demonstrate the effectiveness of the proposed criteria.;Third, we consider the task of learning the parameters of a model from data. Maximum likelihood estimation in graphical models is difficult to the intractability of computing the log-partition function and marginals. In surrogate likelihood training, one approximates these quantities using an approximate inference algorithm. We focus on approximate inference methods that utilize a control parameter to trade computation for accuracy and examine when investing more computation leads to more accurate parameter estimates and models that yield more accurate predictions. Surprisingly, we show that it is not always beneficial to increase computation during learning, particularly in data sets containing relatively few observations and also when the model being fit is heavily misspecified. We also expose an interesting bias-variance trade-off between low computation inference methods and high computation inference methods.
机译:概率图形模型提供了一种方便而紧凑的方式来描述数据中复杂和不确定的关系。图形模型定义了许多随机变量的联合概率分布,这些变量影响了基础图结构。不幸的是,推理在图形模型中通常是难以处理的,它无法准确描述真实数据中出现的复杂依赖性。本论文重点研究了用于学习和在图形模型中进行近似推理的理论和算法。我们提出并研究了一种自下而上的推理和学习方法,我们从初始的计算便宜的近似值开始,然后通过额外的计算对初始近似值进行改进。我们在三种不同的情况下研究了自底向上方法固有的计算准确性权衡:首先,我们考虑了寻找模型的最可能(MAP)配置的任务。我们关注与加权匹配问题(经典的组合优化问题)相对应的一类图形模型,以及基于线性规划(LP)松弛的MAP推理算法。在这种设置下,LP松弛的最佳值为MAP解决方案提供了一个上限,以解决可能非常宽松的加权匹配问题。因此,我们提出了一种自下而上的切割平面算法,该算法迭代地添加了约束条件,从而使匹配解决方案的上限更加严格。然后,我们推导了一种最大乘积置信传播算法,该算法可证明对某些选择的紧缩约束条件能够很好地解决匹配问题。第二,我们考虑了计算模型边际概率的任务。 Loopy Belief Propagation(BP)是一种通过在循环图形模型中的相邻节点之间迭代传递消息来获取边际概率估计的算法。广义信念传播(GBP)是一类近似推理算法,它通过在节点群集之间传递消息而基于Loopy BP构建。 GBP提供了产生边际估计的保证,该边际估计比Loopy BP准确得多,但对选择的集群也非常敏感。因此,我们提出了一个标准-树的稳健性-选择GBP使用的簇的集合,从某种意义上说,当定义模型的因素诱导树时,这不比Loopy BP差。我们提出了一种方法来找到树型健壮的聚类集合,并通过经验证明了所提出标准的有效性。第三,我们考虑了从数据中学习模型参数的任务。图形模型中的最大似然估计难以计算对数分区函数和边际。在替代似然训练中,人们使用一种近似推理算法来近似这些量。我们专注于利用控制参数来交换计算精度的近似推理方法,并检查何时投入更多的计算会导致更准确的参数估计和产生更准确预测的模型。出乎意料的是,我们表明在学习期间增加计算并不总是有益的,特别是在包含相对较少观察值的数据集中,以及在严重不正确地拟合模型时。我们还揭示了低计算推断方法与高计算推断方法之间的有趣偏差偏差折衷。

著录项

  • 作者

    Gelfand, Andrew Edward.;

  • 作者单位

    University of California, Irvine.;

  • 授予单位 University of California, Irvine.;
  • 学科 Computer Science.;Statistics.;Information Science.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 217 p.
  • 总页数 217
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号