首页> 外文学位 >Post-transcriptional regulation of gene expression in response to iron deficiency in Saccharomyces cerevisiae.
【24h】

Post-transcriptional regulation of gene expression in response to iron deficiency in Saccharomyces cerevisiae.

机译:酿酒酵母中对铁缺乏反应的基因表达的转录后调控。

获取原文
获取原文并翻译 | 示例

摘要

The ability of iron (Fe) to easily transition between two valence states makes it a preferred co-factor for innumerable biochemical reactions, ranging from cellular energy production, to oxygen transport, to DNA synthesis and chromatin modification. While Fe is highly abundant on the crust of the earth, its insolubility at neutral pH limits its bioavailability. As a consequence, organisms have evolved sophisticated mechanisms of adaptation to conditions of scarce Fe availability.;Studies in the baker's yeast Saccharomyces cerevisiae have shed light into the cellular mechanisms by which cells respond to limited Fe-availability. In response to Fedeficiency, the transcription factors Aft1 and Aft2 activate a group of genes collectively known as the Fe-regulon. Genes in this group encode proteins involved in high-affinity plasma membrane Fe-transport and siderophore uptake, as well as Fe-mobilization from intracellular stores and heme re-utilization. Concomitant with the up-regulation of the Fe-regulon, a large number of mRNAs encoding Fe-dependent proteins as well as proteins involved in many Fe-dependent processes are markedly down regulated. Thus, in response to low Fe-levels the cell activates the Fe-uptake and mobilization systems, while down-regulating mRNAs involved in highly Fe-demanding processes leading to a genome-wide remodeling of cellular metabolism that permits the funneling of the limiting Fe to essential Fe-dependent reactions.;The Fe-regulon member Cth2 belongs to a family of mRNA-binding proteins characterized by an RNA-binding motif consisting of two tandem zinc-fingers of the CX8CX5CX3H type. Members of this family recognize and bind specific AU-rich elements (AREs) located in the 3'untranslated region (3'UTRs) of select groups of mRNAs, thereby promoting their rapid degradation. In response to Fe-limitation, Cth2 binds ARE sequences within the 3'UTRs of many mRNAs encoding proteins involved in Fe-homeostasis and Fe-dependent processes, thereby accelerating their rate of decay.;Work described in this dissertation demonstrates that the Cth2 homolog, Cth1, is a bona fide member of the Fe-regulon, binds ARE-sequences within the 3'UTRs of select mRNAs and promotes their decay. Cth1 and Cth2 appear to be only partially redundant; Cth1 preferentially targets mRNAs encoding mitochondrial proteins, while Cth2 promotes the degradation of most of Cth1 targets in addition to other mitochondrial and non-mitochondrial Fe-requiring processes. The coordinated activity of Cth1 and Cth2 results in dramatic changes in glucose metabolism. In addition, experiments described in this dissertation indicate that the CTH1 and CTH2 transcripts are themselves subject to ARE-mediated regulation by the Cth1 and Cth2 proteins, creating an auto- and trans-regulatory circuit responsible for differences in their expression. Finally, work described here demonstrates that Cth2 is a nucleocytoplasmic shuttling protein and that shuttling is important for the early determination of cytosolic mRNA-fate.
机译:铁(Fe)易于在两个价态之间转变的能力使其成为无数生化反应的首选辅助因子,这些生化反应的范围从细胞产生能量到氧气转运到DNA合成和染色质修饰。尽管铁在地壳上含量很高,但在中性pH值下其不溶性限制了其生物利用度。结果,有机体已经进化出了适应稀缺Fe的条件的复杂机制。面包酵母中的酿酒酵母研究已经阐明了细胞对有限的Fe利用率作出反应的细胞机制。响应Fedeficiency,转录因子Aft1和Aft2激活了一组统称为Fe-调节子的基因。该组中的基因编码参与高亲和性质膜铁转运和铁载体吸收以及细胞内存储中铁动员和血红素再利用的蛋白质。与Fe-调节子的上调同时,大量编码Fe-依赖性蛋白以及参与许多Fe-依赖性过程的蛋白的mRNAs被显着下调。因此,响应低铁水平,细胞激活铁的摄取和动员系统,同时下调参与高铁需求过程的mRNA,从而导致细胞代谢的全基因组重塑,从而使有限的铁能够漏斗Fe-调节子成员Cth2属于mRNA结合蛋白家族,其特征是由两个CX8CX5CX3H型串联锌指组成的RNA结合基序。该家族的成员识别并结合位于mRNA选择组的3'非翻译区(3'UTR)中的特定富AU元件(ARE),从而促进其快速降解。响应Fe限制,Cth2结合许多编码与Fe稳态和Fe依赖过程有关的蛋白质的mRNA的3'UTR内的ARE序列,从而加快了它们的衰变速度。 Cth1是Fe-regulon的真正成员,可与选定mRNA的3'UTR内的ARE序列结合并促进其衰变。 Cth1和Cth2似乎只是部分冗余; Cth1优先靶向编码线粒体蛋白的mRNA,而Cth2促进除其他线粒体和非线粒体需要Fe的过程之外,大多数Cth1靶标的降解。 Cth1和Cth2的协调活动导致葡萄糖代谢发生显着变化。此外,本文描述的实验表明,CTH1和CTH2转录本本身受到Cth1和Cth2蛋白的ARE介导的调节,从而形成了导致其表达差异的自调节和反调节电路。最后,此处描述的工作证明Cth2是一种核质穿梭蛋白,并且穿梭对于细胞质mRNA命运的早期测定很重要。

著录项

  • 作者

    Vergara, Sandra Viviana.;

  • 作者单位

    Duke University.;

  • 授予单位 Duke University.;
  • 学科 Biology Molecular.;Biology Cell.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 198 p.
  • 总页数 198
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号