首页> 外文学位 >The Study of Biomolecule-Substrate Interactions by Single Molecule Force Spectroscopy and Brownian Dynamics Simulations.
【24h】

The Study of Biomolecule-Substrate Interactions by Single Molecule Force Spectroscopy and Brownian Dynamics Simulations.

机译:通过单分子力谱和布朗动力学模拟研究生物分子与底物的相互作用。

获取原文
获取原文并翻译 | 示例

摘要

Hybrids of biomolecules and nanomaterials have been identified as promising candidates in the development of novel therapeutics and electronic devices. Single stranded DNA (ssDNA)-bound Single-walled carbon nanotubes (SWCNTs) are of particular interest as they may be the key to solving the challenges that face the carbon nanotube separation technology and because of their potential application in bio-nanomedicine. The ability of ssDNA to form a stable hybrid with CNTs has been attributed to the structure and amphiphilic nature of this macromolecule, enabling the dispersion, sorting and patterned placement of nanotubes. Considering the significant role of ssDNA-CNTs in future technologies and the potential toxicity of such nanomaterials in biological systems, it is essential to gain a quantitative and fundamental understanding on the interactions that allow, weaken or prevent the formation of these hybrids. In this dissertation, we use both experimental and theoretical methods to systematically investigate the major characteristics of these interactions. The free energy of binding of ssDNA homopolymers to solvated carbon nanotubes is one of the key characteristics that determine the stability of such dispersions. We used single molecule force spectroscopy (SMFS), first on graphite and next on single walled carbon nanotubes, to probe and directly quantify the binding strength of ssDNA homopolymer oligomers to these substrates. The force resisting removal of DNA molecules from these surfaces shows characteristic steady-state force plateaus which were distinguishable for each DNA sequence. The free energy of binding per nucleotide for these oligomers on graphite were ranked as T >= A > G >= C (11.3 +/- 0.8 kT, 9.9 +/- 0.4 kT, 8.3 +/- 0.2 kT, and 7.5 +/- 0.8 kT, respectively). On SWCNTs, these interactions decreased in the following order: A > G > T > C, and their magnitude was much larger than on graphite (38.1 +/- 0.2; 33.9 +/- 0.1; 23.3 +/- 0.1; 17.1 +/- 0.1 kT, respectively). In addition to the binding strength of ssDNA nucleotide to surfaces, it is equally as important to understand the dynamics of these interactions. The force response of a simple chain-like polymeric molecule (representative of single stranded DNA) was studied using Brownian dynamics to shed light on these dynamics and the features that may be masked in SMFS experiments. Through simulations at slow peeling rates, our Brownian dynamics model confirmed the predictions of an equilibrium statistical thermodynamic model. Faster removal rates resulted in deviations from equilibrium which were dominated by a combination of Stokes (viscous) drag and a finite desorption rate of the monomeric units. Furthermore, the force probe's thermal fluctuations were shown to be affected by the spring constant of the contact mode AFM cantilever Consequently, this effect provided evidence on the source of disappearance for certain key features such as force spikes, associated with the desorption of individual links and predicted by the statistical thermodynamic model under displacement control, from SMFS experiments. In studying the elastic response of a freely jointed chain stretched in 2D and 3D, we obtained analytical expressions for two modes of stretching: i) when force is applied only to one end of the chain, and ii) when the applied force is distributed uniformly throughout the chain. By comparing, we confirmed that these expressions correctly predict the results obtained from our Brownian dynamics simulations as well as experimental results from the literature.
机译:生物分子和纳米材料的混合体已被确定为新型疗法和电子设备开发的有前途的候选者。绑定单链DNA(ssDNA)的单壁碳纳米管(SWCNT)尤其令人关注,因为它们可能是解决碳纳米管分离技术面临的挑战的关键,并且因为它们在生物纳米药物中的潜在应用。 ssDNA与CNT形成稳定杂合体的能力已归因于该大分子的结构和两亲性质,从而使纳米管得以分散,分选和图案化放置。考虑到ssDNA-CNTs在未来技术中的重要作用以及这种纳米材料在生物系统中的潜在毒性,因此必须对允许,削弱或阻止这些杂化物形成的相互作用获得定量和基本的了解。本文运用实验和理论两种方法,系统地研究了这些相互作用的主要特征。 ssDNA均聚物与溶剂化碳纳米管结合的自由能是决定此类分散体稳定性的关键特征之一。我们首先在石墨上然后在单壁碳纳米管上使用了单分子力谱(SMFS),以探测并直接定量ssDNA均聚物低聚物与这些底物的结合强度。抵抗从这些表面除去DNA分子的力显示出特征性的稳态力平稳状态,这对于每个DNA序列都是可区分的。这些寡聚物在石墨上的每个核苷酸结合的自由能的等级为T> = A> G> = C(11.3 +/- 0.8 kT,9.9 +/- 0.4 kT,8.3 +/- 0.2 kT和7.5 + / -分别为0.8 kT)。在SWCNT上,这些相互作用按以下顺序降低:A> G> T> C,并且它们的强度远大于石墨(38.1 +/- 0.2; 33.9 +/- 0.1; 23.3 +/- 0.1; 17.1 + / -分别为0.1 kT)。除了ssDNA核苷酸与表面的结合强度外,了解这些相互作用的动力学同样重要。使用布朗动力学研究了简单链状聚合物分子(代表单链DNA)的力响应,以阐明这些动力学以及SMFS实验中可能掩盖的特征。通过在慢速剥离速率下的仿真,我们的布朗动力学模型证实了平衡统计热力学模型的预测。更快的去除速率会导致偏离平衡,而这种偏离主要由斯托克斯(粘滞)阻力和单体单元的有限解吸速率共同决定。此外,力探头的热波动受接触模式AFM悬臂的弹簧常数影响。因此,这种作用为某些关键特征(例如力尖峰)的消失来源提供了证据,这与单个链节的脱附有关。由SMFS实验根据位移控制下的统计热力学模型预测。在研究以2D和3D拉伸的自由连接链的弹性响应时,我们获得了两种拉伸模式的解析表达式:i)当力仅施加于链的一端时; ii)当施加的力均匀分布时整个链条。通过比较,我们确认这些表达式正确地预测了从我们的布朗动力学模拟获得的结果以及来自文献的实验结果。

著录项

  • 作者

    Cook, Sara Iliafar.;

  • 作者单位

    Lehigh University.;

  • 授予单位 Lehigh University.;
  • 学科 Engineering Chemical.;Engineering Materials Science.;Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 281 p.
  • 总页数 281
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号