首页> 外文学位 >Advanced pattern-matching trigger system design for the ARIANNA High Energy Neutrino Detector.
【24h】

Advanced pattern-matching trigger system design for the ARIANNA High Energy Neutrino Detector.

机译:适用于ARIANNA高能中微子探测器的高级模式匹配触发系统设计。

获取原文
获取原文并翻译 | 示例

摘要

A neutrino is one of the universe's essential ingredients. Neutrinos are very hard to detect because they have no electrical charges and interact little with other particles. Thus, extremely large and sensitive detectors are required to detect neutrinos. The Antarctic Ross Ice shelf ANtenna Neutrino Array (ARIANNA) is a proposed detector for Ultra High Energy (UHE) astrophysical neutrinos. It consists of a surface array of radio receivers and can observe 1 ns radio pulses generated by UHE neutrino interactions with oxygen and hydrogen nuclei in the ice of the Ross Ice Shelf.;Each ARIANNA station has four radio frequency antennas, four amplifiers, and a data acquisition system (DAQ). The DAQ of each station has four acquisition channels consisting of four daughter cards and a motherboard. Each daughter card has a custom CMOS digitization and real-time triggering circuitry (ATWD chip), and a field programmable gate array (FPGA) device. The Motherboard has four slots to connect with acquisition cards, another FGPA device for trigger control and data buffering, an embedded CPU with solid-state data storage, and interfaces to an Iridium satellite short burst data transceiver and a long-range wireless communications module.;Each acquisition card includes an Advanced Transient Waveform Digitizer (ATWD) chip; a high speed analog sampling, real time pattern matching triggering and digitizing integrated circuit. It has the ability to acquire the incoming waveforms at 2 GHz with over 11-bits of dynamic range. In each station, the acquisition cards receive detected amplified RF signals simultaneously and store them into 128 samples.;In addition, the ATWD has the ability to compensate for the fixed pattern noise (FPN) of the sampling and trigger circuitry, which are generated by variations in the gate to drain capacitance in the chip, or variations in the input offsets of the trigger comparators. If left uncorrected, FPN causes variations in trigger thresholds, effectively adding noise in the trigger. Calibration and cancellation of FPN is accomplished by programming per-comparator digital to analog converters to null the FPN at each comparator. After calibration, the RMS trigger noise is reduced by a factor of 3 to 4.;The data acquisition system is capable of accepting three types of triggers: external, forced, and thermal. An external trigger acts upon an external electrical input signal much like an oscilloscope's trigger and is used in the laboratory or in the field during experimental studies. A forced trigger is one that is caused by the acquisition system's CPU, and is typically used to force the periodic collection of data that is unbiased by the system's thermal trigger. These "thermal" triggers are the most interesting: they are generated by the signals that the data acquisition system is collecting. Noise - or the rare neutrino events ARIANNA is searching for - will at times cause input signals to exceed trigger thresholds. To allow for low thresholds while keeping trigger rates from being swamped by noise, the thermal trigger system is set up to accept only signal-like events rather than mere noise. This includes requiring bipolar triggers on a per-channel basis over a very brief (~4 ns) time period, plus a requirement that a majority of data acquisition channels (e.g., any 3 out of 4 channels) must all trigger within a brief time window (e.g., 64 ns). These more stringent requirements are expected to capture the vast majority of neutrino events while limiting the rate of "events" due solely to noise. After any triggering event, the sampling of incoming signal is halted, digitized data is read out from the acquisition cards and is stored locally in a solid-state memory card, and then it is transmitted to UC Irvine for further processing over Iridium satellite modem or long-distance wireless communication.;This dissertation focuses on the data acquisition system for ARIANNA, most particularly on the design and performance of its trigger system, including FPN calibration and correction and trigger efficiency.
机译:中微子是宇宙的基本成分之一。中微子很难检测,因为它们没有电荷并且与其他粒子的相互作用很小。因此,需要非常大且灵敏的检测器来检测中微子。南极罗斯冰架天线中微子阵列(ARIANNA)是一种超高能(UHE)天体中微子的探测器。它由无线电接收器的表面阵列组成,可以观测到由UHE中微子与罗斯冰架冰中的氧和氢核相互作用而产生的1 ns无线电脉冲。每个ARIANNA站都有四个射频天线,四个放大器和一个数据采集​​系统(DAQ)。每个工作站的DAQ有四个采集通道,包括四个子卡和一个主板。每个子卡都有一个定制的CMOS数字化和实时触发电路(ATWD芯片),以及一个现场可编程门阵列(FPGA)设备。主板具有四个插槽,可与采集卡连接,另一个用于触发控制和数据缓冲的FGPA设备,具有固态数据存储的嵌入式CPU,并与铱星卫星短脉冲数据收发器和远程无线通信模块接口。 ;每个采集卡都包含一个高级瞬态波形数字化器(ATWD)芯片;高速模拟采样,实时模式匹配触发和数字化集成电路。它有能力以超过11位的动态范围采集2 GHz的输入波形。在每个站中,采集卡同时接收检测到的放大的RF信号并将其存储为128个样本。此外,ATWD能够补偿采样和触发电路产生的固定模式噪声(FPN)。芯片中栅极到漏极电容的变化或触发比较器的输入偏移的变化。如果不加以纠正,FPN会引起触发阈值变化,从而有效地增加了触发中的噪声。通过对每个比较器的数模转换器进行编程以使每个比较器的FPN为零,可以完成FPN的校准和消除。校准后,RMS触发噪声降低了3到4倍。数据采集系统能够接受三种类型的触发:外部,强制和热触发。外部触发器对外部电输入信号的作用非常类似于示波器的触发器,并且在实验室或实验研究期间在现场使用。强制触发是由采集系统的CPU引起的,通常用于强制定期收集不受系统热触发影响的数据。这些“热”触发是最有趣的:它们是由数据采集系统正在收集的信号生成的。噪声-或ARIANNA寻找的罕见中微子事件-有时会导致输入信号超过触发阈值。为了允许较低的阈值,同时又保持触发速率不被噪声淹没,热触发系统设置为仅接受类似信号的事件,而不是仅接受噪声。这包括要求在非常短的时间(约4 ns)内在每个通道的基础上进行双极触发,并且要求大多数数据采集通道(例如,四个通道中的任何三个)必须都在短时间内触发窗口(例如64 ns)。预期这些更严格的要求将捕获绝大多数中微子事件,同时仅由于噪声限制“事件”的发生率。在任何触发事件之后,输入信号的采样都将停止,从采集卡中读取数字化的数据,并将其本地存储在固态存储卡中,然后将其传输到UC Irvine,以通过铱星卫星调制解调器或本文主要针对ARIANNA的数据采集系统,尤其是其触发系统的设计和性能,包括FPN校准和校正以及触发效率。

著录项

  • 作者

    Roumi, Mahshid.;

  • 作者单位

    University of California, Irvine.;

  • 授予单位 University of California, Irvine.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 105 p.
  • 总页数 105
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号