首页> 外文学位 >Development of optical systems and imaging analyses for hyperspectral microscopy and 3D super-resolution imaging.
【24h】

Development of optical systems and imaging analyses for hyperspectral microscopy and 3D super-resolution imaging.

机译:用于高光谱显微镜和3D超分辨率成像的光学系统和成像分析的开发。

获取原文
获取原文并翻译 | 示例

摘要

Many of the unanswered questions in cellular biology involve the functionality and structural composition of different cells. Generally, most of the unanswered questions that are of interest require information regarding protein-protein interactions or information on the general structure of the cell. Most of these features exist on size scales of 10 to 200 nm, of which conventional fluorescence microscopy is incapable of resolving details less than 200 nm. Therefore, many advanced fluorescence microscopy techniques have been developed over the past few decades to address the demands of higher resolutions (both spatial and temporal) as well as multicolor imaging in order to further the efforts of biological and medical science. Super-resolution microscopy techniques are capable of achieving resolutions several factors greater than conventional microscopy. Spectral imaging techniques have been developed towards generating hyper-spectral movies at 30 frames per second. Many new techniques are in development to meet the growing demand for better biological information.;In this work, we first demonstrate a high-speed hyperspectral line-scanning microscope (HSM) that is capable of recording 128 spectral channels in 27 frames per second. To reduce the aberrations of the spectral images, a spherical prism spectrometer is implemented in HSM. The design and calibrations of the spectrometer are given in detail. Next, we describe a 3D supper-resolution localization algorithm based on the phase-retrieved point spread function (PSF) model, which gives better fitting accuracy and less artifacts than a Gaussian PSF model. The phase-retrieval process, PSF generation, 3D single-emitter localization algorithm, and the results from localizing various samples are discussed in the first part of this section. The second part discusses the theoretical estimation precisions of various multiemitter models in 3D localization and describes a 3D multiemitter localization algorithm as well as the reconstruction results of microtubules. In the end, we demonstrate a new configuration of a light sheet microscope that is capable of reconstructing a high-contrast 3D whole-cell image with the use of a single objective lens. The optical layout of this light sheet microscope, the optical alignment procedures, the instrumentation, and the system calibration are given in this section.
机译:细胞生物学中许多未解决的问题涉及不同细胞的功能和结构组成。通常,大多数未解决的问题都需要有关蛋白质相互作用的信息或有关细胞总体结构的信息。这些特征大多数都存在于10至200 nm的尺寸范围内,其中常规的荧光显微镜无法分辨200 nm以下的细节。因此,在过去的几十年中,已经开发了许多先进的荧光显微镜技术,以满足更高分辨率(空间和时间)以及多色成像的需求,以进一步推动生物学和医学科学的努力。超分辨率显微镜技术能够实现比传统显微镜大几倍的分辨率。已经开发了光谱成像技术以产生每秒30帧的高光谱电影。为了满足对更好的生物信息的不断增长的需求,正在开发许多新技术。在这项工作中,我们首先展示了一种高速高光谱线扫描显微镜(HSM),它能够以每秒27帧的速度记录128个光谱通道。为了减少光谱图像的像差,在HSM中实现了球面棱镜光谱仪。详细给出了光谱仪的设计和校准。接下来,我们描述一种基于相位获取点扩展函数(PSF)模型的3D超分辨率定位算法,该算法比高斯PSF模型具有更好的拟合精度和更少的伪像。本节的第一部分讨论了取相过程,PSF生成,3D单发射器定位算法以及对各种样本进行定位的结果。第二部分讨论了3D定位中各种多发射器模型的理论估计精度,并介绍了3D多发射器定位算法以及微管的重建结果。最后,我们演示了一种光片显微镜的新配置,该显微镜能够使用单个物镜来重建高对比度3D全细胞图像。本节将介绍此光片显微镜的光学布局,光学对准程序,仪器和系统校准。

著录项

  • 作者

    Liu, Sheng.;

  • 作者单位

    The University of New Mexico.;

  • 授予单位 The University of New Mexico.;
  • 学科 Optics.;Biophysics.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 264 p.
  • 总页数 264
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号