首页> 外文学位 >System reliability analysis methods for rapid multi-scale network risk assessment and decision making.
【24h】

System reliability analysis methods for rapid multi-scale network risk assessment and decision making.

机译:用于快速多尺度网络风险评估和决策的系统可靠性分析方法。

获取原文
获取原文并翻译 | 示例

摘要

For effective hazard mitigation planning and prompt-but-prudent responses, it is essential to evaluate the reliability of infrastructure networks accurately and efficiently and if needed, to make a reasonable decision under a budgetary constraint on retrofitting prioritization of vulnerable components. In general, however, network analysis is highly intricate in nature because of a large number of network components, complex network topology, statistical dependence between component failures, and network interdependency. Thus, network analysis is often performed by repeating computational simulations of network performance for random samples of hazard intensity measures and corresponding component status. This simulation-based approach allows for straightforward applications of deterministic network analysis algorithms, yet hampers rapid risk assessment and effective decision-making. Even though a non-simulation based algorithm, termed as a recursive decomposition algorithm (RDA), was recently proposed to identify disjoint cut sets and link sets and to compute the network reliability based on the identified sets, it is not feasible for a large-sized network because of the exponential program nature. Besides these challenges, it is a more daunting task to conduct a decision-making analysis on the network-retrofitting problem because of multiple conflicting decision-making criteria, re-retrofitting effects, integer optimization for a large-size problem and others.;This thesis proposes noble network analysis methods to efficiently compute the system reliability and make a reasonable decision on retrofitting prioritization of vulnerable components in the large-sized network. First of all, an efficient risk assessment framework for large-size networks is introduced with consideration of both inter-event and intra-event uncertainties in spatially correlated ground motions. Subsequently, two advanced analytical network reliability approaches are developed for the framework -- the "selective" Recursive Decomposition Algorithm (RDA) and the clustering-based multi-scale network reliability analysis. In calculating the probabilities of network disconnection events, the selective RDA achieves faster convergence of the bounds on the probabilities with a significantly reduced number of identified sets by identifying critical disjoint cut set and link sets preferentially by use of the most reliable path algorithm and a selective graph decomposition scheme. Besides, the clustering-based multi-scale network reliability approach overcomes the intrinsic limitation of the selective RDA that the computational cost may increase exponentially with the network size. The approach identifies an adequate number of clusters by use of spectral clustering algorithms and represents the clusters with representative super-links connecting inter-cluster nodes. If the simplified network is still exceedingly large to handle, additional levels of hierarchical clustering are introduced. By use of the proposed approach, any sizable problem can be solved without significant accuracy compromise. Lastly, a multi-scale multi-criteria decision making analysis approach is developed by incorporating the component-level multi-criteria utility theory and the network component importance measure to the aforementioned advanced analytical network reliability analysis approaches. Given an integer-based budgetary constraint and interaction of network components, the approach consists of a constraint binary integer optimization program and an iteration process to select a component to retrofit with preference while updating the CPIM component utilities based on the retrofit decisions. All of the proposed methods are applied to the hypothetical and/or real-world examples to demonstrate their accuracy and efficiency.
机译:为了进行有效的危害缓解计划和迅速而谨慎的响应,至关重要的是准确,高效地评估基础架构网络的可靠性,并在需要时在预算约束下做出合理的决定,以对脆弱组件进行优先级提升。但是,总的来说,由于大量网络组件,复杂的网络拓扑,组件故障之间的统计依赖性以及网络相互依赖性,网络分析本质上是高度复杂的。因此,网络分析通常是通过对危害强度度量和相应组件状态的随机样本重复网络性能的计算模拟来执行的。这种基于仿真的方法允许直接使用确定性网络分析算法,但会阻碍快速的风险评估和有效的决策制定。即使最近提出了一种基于非模拟的算法,称为递归分解算法(RDA),以识别不相交的割集和链接集,并基于所识别的集来计算网络可靠性,但对于大型的规模的网络,因为它具有指数级的程序性质。除了这些挑战之外,由于存在多个相互冲突的决策标准,重新改造效果,针对大型问题的整数优化等,对网络改造问题进行决策分析也是一项艰巨的任务。本文提出了一种高尚的网络分析方法,可以有效地计算系统的可靠性,并为大型网络中易损组件的优先级提升做出合理的决策。首先,针对大型网络引入了一种有效的风险评估框架,同时考虑了空间相关地面运动中事件间和事件内的不确定性。随后,为框架开发了两种高级分析网络可靠性方法-“选择性”递归分解算法(RDA)和基于聚类的多尺度网络可靠性分析。在计算网络断开事件的概率时,选择性RDA通过优先选择关键的不相交割集和链路集(优先使用最可靠的路径算法和选择性算法),以明显减少的已识别集数实现了概率边界的更快收敛。图分解方案。此外,基于聚类的多尺度网络可靠性方法克服了选择性RDA的固有局限性,即计算成本可能随网络规模呈指数增长。该方法通过使用频谱聚类算法来识别足够数量的集群,并使用连接集群间节点的具有代表性的超链接来表示集群。如果简化的网络仍然无法处理,则将引入附加级别的层次化群集。通过使用所提出的方法,可以解决任何较大的问题,而不会显着降低精度。最后,通过将组件级多准则效用理论和网络组件重要性测度并入上述高级分析网络可靠性分析方法中,开发了一种多尺度多准则决策分析方法。给定基于整数的预算约束和网络组件的交互,该方法由约束二进制整数优化程序和迭代过程组成,以选择要优先进行改造的组件,同时根据改造决策更新CPIM组件实用程序。所有提出的方法都应用于假设和/或实际示例中,以证明其准确性和效率。

著录项

  • 作者

    Lim, Hyun-Woo.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Civil engineering.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 152 p.
  • 总页数 152
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号