首页> 外文学位 >Dynamics of a Kinetic Energy Storage Device for a Translating Hydrokinetic System.
【24h】

Dynamics of a Kinetic Energy Storage Device for a Translating Hydrokinetic System.

机译:用于平动流体动力学系统的动能存储装置的动力学。

获取原文
获取原文并翻译 | 示例

摘要

Current hydropower is sourced predominately from dams, which have several ecological and societal issues. Despite growing demand for energy, dam construction has recently been at a standstill. Hydrokinetic systems are new methods of harvesting renewable energy from rivers without requiring dams. Hydrokites, a subset of hydrokinetic systems, use a translating hydrofoil to generate electricity. Previous models of hydrokite systems have been promising, but their performance in experimental settings has not been as expected. One possible cause for this discrepancy is a loss in system energy when the hydrofoil reaches the end of its stroke, resulting in significantly less power generation. This thesis proposes an alternative hydrokite model that incorporates a flywheel to store kinetic energy during the cycle.;A numerical simulation was created that calculates the average cycle power for a flywheel hydrokite system for given system parameters. The dynamics of this system were studied by optimizing various system parameters to maximize average cycle power. The optimization routine found that 278.1 W of power could be produced in a river flow of 1 m/s for the flywheel hydrofoil model. In order to determine how the flywheel affects the system, the optimized hydrokite with a flywheel was compared to an optimized version of the previous hydrokite without a flywheel. The previous optimized model produced an average cycle power of 24.91 W, which shows the flywheel was able to improve the performance of the system by over 1100%.;The parameters found from the optimization schemes are only expected to be optimal for instantaneous hydrofoil flips; therefore, in order to characterize how the hydrofoil flip affects the system, the simulation was modified by setting the hydrofoil angle to 0 degrees for the duration of the flip time. The system was optimized again for various flip times. The simulation predicts that less power will be generated for increasing flip times until a flip time of 0.45 seconds is reached where the system cannot produce any power. Experimental testing on a small-scale system was performed to determine how much electrical energy is required to flip a hydrofoil for various flip times and submerged depth. All hydrofoil flips required less than 1 J, a small fraction of the predicted total cycle energy generated.
机译:当前的水力发电主要来自水坝,这些水坝有几个生态和社会问题。尽管对能源的需求不断增长,但大坝建设近来一直处于停滞状态。流体动力学系统是无需大坝即可从河流收集可再生能源的新方法。 Hydrokites是水动力系统的子集,它使用平移水翼发电。以前的水硬岩系统模型是有前途的,但是它们在实验环境中的性能并没有达到预期。造成这种差异的一个可能原因是,当水翼桨叶到达冲程末端时,系统能量会损失,从而导致发电量大大减少。本文提出了一种可替代的水上风筝模型,该模型结合了飞轮在循环过程中存储动能。创建了一个数值模拟,可以计算给定系统参数下飞轮水上风筝系统的平均循环功率。通过优化各种系统参数以最大程度地提高平均循环功率来研究该系统的动力学特性。优化例程发现,对于飞轮水翼模型,在1 m / s的河流流量中可以产生278.1 W的功率。为了确定飞轮如何影响系统,将带有飞轮的优化水硬岩与之前没有飞轮的水硬岩的优化版本进行了比较。先前的优化模型产生的平均循环功率为24.91 W,这表明飞轮能够将系统的性能提高1100%以上;从优化方案中找到的参数仅被期望用于瞬时水翼翻转。因此,为了表征水翼翻转如何影响系统,通过在翻转时间内将水翼角度设置为0度来修改模拟。再次针对各种翻转时间对该系统进行了优化。仿真预测,增加翻转时间将产生更少的功率,直到达到0.45秒的翻转时间为止(系统无法产生任何功率)。在小型系统上进行了实验测试,以确定在各种翻转时间和水下深度下翻转水翼需要多少电能。所有的水翼翻转都需要小于1 J的能量,仅占预测的总循环能量的一小部分。

著录项

  • 作者

    Douglas, Matthew Robert.;

  • 作者单位

    Rochester Institute of Technology.;

  • 授予单位 Rochester Institute of Technology.;
  • 学科 Mechanical engineering.
  • 学位 M.S.
  • 年度 2014
  • 页码 133 p.
  • 总页数 133
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 公共建筑;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号