首页> 外文学位 >Characterization of the dynamic performance of machine spindles.
【24h】

Characterization of the dynamic performance of machine spindles.

机译:表征机床主轴的动态性能。

获取原文
获取原文并翻译 | 示例

摘要

Machine spindle dynamics and (axis of rotation) error motions may vary as a function of spindle speed due to gyroscopic effects, changes in bearing preload, centrifugal forces, and thermals effects. It is necessary to characterize these changes in order to fully define the spindle's performance. In this research, two different aspects of spindle performance are considered: a) spindle dynamics; and b) spindle error (SE) motions. The objective is to simultaneously measure the (potential) changes in both the error motions and dynamic response with spindle speed.;This work is motivated by the influence of spindle performance on machining operations. Machining instability (chatter) leads to poor surface finish, high rejection rates, rapid tool wear, and, potentially, spindle damage. Stable machining conditions may be identified using well-known milling process models. To do so, the dynamics of the tool-holder-spindle-machine assembly as reflected at the tool tip is required. Here, the dynamics of an artifact-spindle-machine combination are measured at the tip of a standard artifact when the spindle is rotating. Tests are conducted at different spindle speeds to capture the speed-dependent changes in the spindle dynamics. Receptance coupling substructure analysis (RCSA) is then applied to predict the tool point response for arbitrary tool-holder combination in the same spindle. RCSA is used to first decouple the artifact dynamics from the measured artifact-spindle-machine assembly dynamics (to isolate the spindle contributions) and then analytically couple the dynamics of a modeled tool-holder to the spindle-machine in order to predict the tool point frequency response function (FRF). A speed-dependent milling stability lobe diagram, which graphically depicts the allowable axial depth of cut as a function of spindle speed, is obtained by identifying the changes in tool point dynamics with spindle speed.;Spindle error motions, which describe the variable position and orientation of the spindle axis as a function of the rotation angle, can affect machined surface quality. Non-contact sensors (such as capacitance gages) may be used to measure the SE motions while the spindle is rotating. A multi-probe error separation method is used to accurately isolate the SE motions and the artifact form error. Tests are repeated at different spindle speeds to examine the associated effects. Together, the identification of the speed-dependent SE motions and tool point FRF will enable an improved capability to predict the milling performance for a given tool-holder-spindle-machine combination.;In this research, the speed-dependent spindle dynamics and the SE motions for three different Haas TM1 machine spindles were studied. At a spindle speed of 3800 rpm, the critical stable axial depth of cut predicted using the stationary tool point FRFs was 6 mm while that predicted using the speed-dependent FRFs was 10 mm. Stable machining was observed at an axial depth of cut of 9 mm at a spindle speed of 3800 rpm. The results showed that incorporating the changing dynamics of the spindle in machining stability models improved the ability to predict chatter. Further, the dynamics and error motions of an NSK HES-500 high speed spindle were also measured.
机译:由于陀螺效应,轴承预紧力的变化,离心力和热效应,机床主轴动力学和(旋转轴)误差运动可能会随主轴速度而变化。为了充分定义主轴的性能,必须对这些变化进行表征。在这项研究中,考虑了主轴性能的两个不同方面:a)主轴动力学; b)主轴误差(SE)运动。目的是同时测量误差运动和动态响应随主轴速度的(潜在)变化。;这项工作是受主轴性能对加工操作的影响所推动的。机加工的不稳定性(颤动)会导致表面光洁度差,废品率高,工具磨损快,并可能损坏主轴。可以使用众所周知的铣削加工模型来确定稳定的加工条件。为此,需要在刀头处反映出刀架-主轴-机床组件的动力学特性。在这里,当主轴旋转时,在标准工件的尖端处测量工件-主轴-机器组合的动力学。在不同的主轴转速下进行测试,以捕获主轴动力学中与转速有关的变化。然后,使用接受耦合子结构分析(RCSA)来预测同一主轴上任意刀架组合的刀点响应。 RCSA用于首先将工件动力学与测得的工件-主轴-机床装配动力学分离开(以隔离主轴影响),然后将建模刀架的动力学与主轴-机床分析耦合,以预测刀具点频率响应函数(FRF)。通过识别刀具点动力学随主轴速度的变化,获得了与速度有关的铣削稳定性凸角图,该图以图形方式描绘了允许的轴向切削深度与主轴速度的关系。主轴误差运动描述了可变位置和主轴轴的方向与旋转角度的函数关系会影响加工表面的质量。非接触式传感器(例如电容计)可用于测量主轴旋转时的SE运动。使用多探针错误分离方法可准确隔离SE运动和伪影形式错误。以不同的主轴速度重复测试以检查相关的影响。总之,识别与速度有关的SE运动和刀具点FRF将提高对给定刀架-主轴-机床组合的铣削性能进行预测的能力。研究了三种不同Haas TM1机床主轴的SE运动。在3800 rpm的主轴转速下,使用固定刀具点FRF预测的临界稳定轴向切削深度为6 mm,而使用依赖于速度的FRF预测的临界轴向切削深度为10 mm。在3800 rpm的主轴转速下,在轴向切削深度为9 mm时观察到稳定的机械加工。结果表明,将主轴的动态变化纳入加工稳定性模型可以提高预测震颤的能力。此外,还测量了NSK HES-500高速主轴的动力学和误差运动。

著录项

  • 作者

    Ganguly, Vasishta.;

  • 作者单位

    The University of North Carolina at Charlotte.;

  • 授予单位 The University of North Carolina at Charlotte.;
  • 学科 Engineering Mechanical.;Engineering Industrial.;Engineering General.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 202 p.
  • 总页数 202
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号