首页> 外文学位 >Investigating the Effects of Non-covalent Interactions in Metal Complexes with Versatile Ligand Scaffolds.
【24h】

Investigating the Effects of Non-covalent Interactions in Metal Complexes with Versatile Ligand Scaffolds.

机译:研究具有通用配体支架的金属配合物中非共价相互作用的影响。

获取原文
获取原文并翻译 | 示例

摘要

In Nature, transition metal-containing enzymes have evolved to catalyze a wide variety of chemical reactions with astounding efficiencies and selectivities through precise control of their primary and secondary coordination environments. Taking inspiration from the active sites of metalloenzymes, synthetic bioinorganic chemists have endeavored to construct metal complexes that model the structures and functions of these enzymes. Controlling the primary coordination spheres of metal ions to model active sites is accomplished through the construction of metal-binding organic ligand frameworks, but the resulting metal complexes often lack the activities observed in their biological counterparts. Non-covalent secondary coordination sphere effects that are present within metalloenzyme active sites are integral to the proper function of these proteins and have been more challenging to emulate within synthetic systems. Manipulation of the secondary coordination environment surrounding synthetic metal complexes can be accomplished by using rigid ligand scaffolds containing groups that promote non-covalent interactions proximal to the metal center.;The Borovik group has developed a number of tetradentate ligands that can bind metal ions and establish a pocket where external ligands can bind to the metal center. The ligands contain moieties that interact with the metal-bound exogenous ligands through non-covalent effects, particularly hydrogen bonds (H-bonds). This dissertation chronicles the advances made with two tripodal ligand platforms that promote intramolecular H-bonding networks within the resulting complexes.;The first ligand studied, TAO, tautomerizes upon metal ion binding to provide a neutral N4 primary coordination environment to the metal center. This tautomerization event places H-bond donating groups proximal to external ligands that can bind to the metal center, producing intramolecular H-bonding networks. TAO complexes are sufficiently flexible to accommodate ligands of varying sizes, shapes, and charges. The versatility of the TAO framework is exemplified through a series of metal complexes which have been characterized in both the solution and solid state. Ab initio theoretical calculations performed on many of these complexes provide insight into the electronic effects of the H-bonding interactions.;The ligand [MST]3- binds metal ions in a similar manner to TAO, but possesses sulfonamido groups that render the complex cavity capable of both accepting H-bonds and binding secondary metal ions. The bifunctionality of [MST]3- has been explored through the synthesis of heterobimetallic complexes wherein the metal ions are bridged by a hydroxido group. The work on [MST]3- in this dissertation focuses on diamagnetic main group analogs of these complexes whose structures could be elucidated in both the solution and solid states. The structurally characterized complexes were found to retain their supramolecular structures in solution. The relevance of some of these complexes to the oxygen evolving complex within Photosystem II is also discussed. Additionally, M-NH3 (M = FeII, FeIII, GaIII) complexes are presented that contain intramolecular H-bonding networks and which remain assembled in both solution and the solid state. A putative FeIII-NH2 species and its reactivity is discussed, and the synthesis and structure of a Ga III-N2H4 complex is documented.;A new N4 donor ligand platform, [POAT]3-, is presented in the final portion of this dissertation. In complexes with this ligand, phosphine oxide groups are positioned within the secondary coordination sphere of the metal center to act as H-bond acceptors and to bind additional metal ions. While these features are akin to those in the [MST]3- system, preliminary studies indicate that the primary coordination sphere is much more reducing; as such, complexes with [POAT]3- are anticipated to stabilize metal complexes in higher oxidation states.
机译:在自然界中,含过渡金属的酶通过精确控制一级和二级配位环境,已经发展出以惊人的效率和选择性催化多种化学反应的方法。从金属酶的活性位点获得启发,合成的生物无机化学家已努力构建能够模拟这些酶的结构和功能的金属配合物。通过构建与金属结合的有机配体框架,可以控制金属离子的主要配位球以模拟活性位点,但是所得的金属络合物通常缺乏在其生物学对应物中观察到的活性。存在于金属酶活性位点中的非共价二级配位球效应对于这些蛋白质的正常功能是不可或缺的,并且在合成系统中进行模拟更具挑战性。可以通过使用含有促进金属中心附近非共价相互作用的基团的刚性配体支架来操纵围绕合成金属配合物的二级配位环境。; Borovik组已开发出许多四齿配体,它们可以结合金属离子并建立外部配体可以结合到金属中心的口袋。所述配体包含通过非共价作用与金属结合的外源配体相互作用的部分,尤其是氢键(H键)。本论文记述了两个三脚架配体平台在促进所得配合物中分子内氢键网络发展方面的进展。;第一个被研究的配体TAO,在金属离子结合时互变异构,为金属中心提供了中性的N4主配位环境。该互变异构事件使氢键供体基团靠近可与金属中心结合的外部配体,从而产生分子内氢键网络。 TAO复合物具有足够的柔韧性,可以容纳各种大小,形状和电荷的配体。 TAO框架的多功能性通过一系列在溶液和固态下均已表征的金属络合物得以例证。从头开始对这些络合物进行的理论计算可提供对H键相互作用的电子效应的深入了解。配体[MST] 3-以与TAO相似的方式结合金属离子,但具有磺酰胺基,从而形成了复杂的腔既能接受氢键又能结合次级金属离子[MST] 3-的双功能已经通过杂双金属配合物的合成得到了探索,其中金属离子被羟基桥接。本文对[MST] 3-的研究集中在这些配合物的反磁性主族类似物上,其结构可以在溶液和固态下得到阐明。发现具有结构特征的复合物在溶液中保留其超分子结构。还讨论了其中一些配合物与Photosystem II中的放氧配合物的相关性。此外,还提出了M-NH3(M = FeII,FeIII,GaIII)配合物,它们包含分子内的H键网络,并且在溶液和固态下均保持组装状态。讨论了推定的FeIII-NH2种类及其反应性,并记录了Ga III-N2H4配合物的合成和结构。;本文的最后部分提出了一种新的N4供体配体平台[POAT] 3- 。在与该配体的配合物中,氧化膦基团位于金属中心的二级配位球内,充当H键受体并结合其他金属离子。尽管这些功能类似于[MST] 3-系统中的功能,但初步研究表明,主要的协调范围将大大缩小。因此,预期与[POAT] 3的配合物可以使金属配合物稳定在较高的氧化态。

著录项

  • 作者

    Sickerman, Nathaniel S.;

  • 作者单位

    University of California, Irvine.;

  • 授予单位 University of California, Irvine.;
  • 学科 Chemistry Inorganic.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 229 p.
  • 总页数 229
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号