首页> 外文学位 >The Influence of Electric Field on the Ordering of Lipid Monolayer and Lipid-Protein Binding.
【24h】

The Influence of Electric Field on the Ordering of Lipid Monolayer and Lipid-Protein Binding.

机译:电场对脂质单层有序性和脂质-蛋白质结合的影响。

获取原文
获取原文并翻译 | 示例

摘要

This thesis is devoted to studies of the influence of an externally controlled electric potential difference on Gibbs monolayers of 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC), as well as its influence on the binding of the C2 domain of cytosolic phospholipase-A2 (cPLA2alpha-C2) protein to the SOPC monolayer. X-ray reflectivity, molecular dynamics (MD) simulations and electrochemical methods are used to gather microscopic and macroscopic information about the ordering, orientation, and binding configuration of the molecules on the electric potential difference or membrane potential.;Gibbs monolayers of SOPC assemble at the interface between a bulk aqueous electrolyte solution and a bulk organic electrolyte solution with 1,2-dichloroethane (DCE) as the solvent. The interfacial area per lipid for different values of electric potential difference between the aqueous and organic phases is determined from interfacial tension measurements. The area per lipid increases when the electric potential difference is greater than 0.18 V. Cyclic voltammetry confirms the result and provides evidence that the interfacial behavior of SOPC monolayers is reversible. X-ray reflectivity measurements are analyzed to determine the interfacial electron density profile, including the thicknesses of the phosphocholine (PC) head group region and the SOPC hydrocarbon chain regions of the monolayer. An increase of electron density in the layer of hydrocarbon chains with increasing electric potential difference is consistent with the penetration of DCE molecules into the hydrocarbon layer, as a result of the increase of area per lipid. The projected total length of SOPC molecules decreases with increasing electric potential difference, where the length is projected onto the direction of the electric field (i.e., the z direction perpendicular to the interface). MD simulations at fixed area per lipid show small differences in the rotation of SOPC molecules when the imposed electric field is varied. This indicates that the primary effect in the experiments is due to the changing area per lipid as a function of electric potential difference, and the subsequent re-orientation of the lipid to accommodate the change in interfacial density.;The analysis of X-ray reflectivity on cPLA2alpha-C2 domains bound to the SOPC monolayer on the water|DCE interface provides information on the angular orientation and penetration depth of the domains under external electric field. The best-fit orientations for the X-ray reflectivity curves for potential difference Delta&phis;w-o =- 0.07 V, 0.03 V, 0.13V, 0.18V are very similar. The best-fit configuration at an electric potential difference of 0.03 V is given by orientation angles theta = 84°, ϕ = 70°, and a penetration of 11.5 +/- 1.7 A. Under this orientation, the calcium binding loop CBL3 penetrates into the hydrocarbon chains of the SOPC monolayer, and the hydrophobic interaction between the chains and the hydrophobic residues is believed to be important for binding. In addition, the Ca2+ ions on the CBLs are located within 1 A of the lipid phosphate group, which provides a favorable electrostatic attraction between cPLA2alpha-C2 and lipids. This configuration generally agrees with MD simulations and EPR measurements carried out by other groups.;Under low electric potential differences (-0.07 V to 0.18 V), the electron density profile shows an increase of electron density in the lipid tail group region after protein binding. This increase is due to both protein and DCE penetration into this region. When the electric potential difference is increased to 0.38 V, the reflectivity curves change significantly. Our study of SOPC monolayers shows that the lipid density will decrease at these high potentials, thus reducing the number of binding sites for proteins. It is also likely that the highly negative charged (-7.6 at pH=7) cPLA2alpha-C2 domains are removed from the interface by the large positive electric potential difference. Future research is required to distinguish between these two possibilities.
机译:本文致力于研究外部控制电势差对1-硬脂酰基-2-油酰基-sn-甘油-3-磷酸胆碱(SOPC)的吉布斯单层的影响,以及其对C2结合的影响。磷脂酶-A2(cPLA2alpha-C2)蛋白的结构域到SOPC单层。 X射线反射率,分子动力学(MD)模拟和电化学方法用于收集有关分子在电势差或膜电势上的有序,取向和结合构型的微观和宏观信息.SOPC的Gibbs单层在以1,2-二氯乙烷(DCE)为溶剂的本体电解质水溶液和本体有机电解质溶液之间的界面。从界面张力测量值确定在水相和有机相之间的不同电势差值的每个脂质的界面面积。当电位差大于0.18 V时,每个脂质的面积都会增加。循环伏安法证实了这一结果,并提供了SOPC单分子层界面行为可逆的证据。分析X射线反射率测量值以确定界面电子密度曲线,包括单层的磷酸胆碱(PC)头基区域和SOPC烃链区域的厚度。由于每个脂质的面积增加,随着电势差的增加,烃链层中电子密度的增加与DCE分子向烃层的渗透一致。 SOPC分子的投影总长度随电势差的增加而减小,其中该长度投影到电场方向(即垂直于界面的z方向)上。在每个脂质固定面积上的MD模拟显示,当施加的电场变化时,SOPC分子旋转的微小差异。这表明实验中的主要作用是由于每个脂质的面积变化与电势差的关系,以及随后脂质的重新取向以适应界面密度的变化。; X射线反射率分析在水| DCE界面上与SOPC单分子层结合的cPLA2alpha-C2域上的信息提供了有关域在外部电场下角取向和穿透深度的信息。电位差Δw= 0.07V,0.03V,0.13V,0.18V的X射线反射率曲线的最佳拟合方向非常相似。电势差为0.03 V时的最佳拟合配置由方向角theta = 84°,φ = 70°,且穿透力为11.5 +/- 1.7A。在此方向下,钙结合环CBL3穿透到SOPC单层的烃链中,并且链与疏水残基之间的疏水相互作用被认为很重要用于绑定。此外,CBL上的Ca2 +离子位于脂质磷酸酯基团的1 A内,这在cPLA2alpha-C2和脂质之间提供了良好的静电吸引。这种配置通常与其他小组进行的MD模拟和EPR测量相符;在低电势差(-0.07 V至0.18 V)下,电子密度分布显示蛋白质结合后脂质尾基区域的电子密度增加。这种增加是由于蛋白质和DCE都渗透到该区域。当电势差增加到0.38 V时,反射率曲线将发生显着变化。我们对SOPC单层的研究表明,在这些高电位下脂质密度会降低,从而减少了蛋白质的结合位点数量。高负电荷(在pH = 7时为-7.6)cPLA2alpha-C2域也可能由于较大的正电势差而从界面上去除。需要进一步的研究来区分这两种可能性。

著录项

  • 作者

    Yu, Hao.;

  • 作者单位

    University of Illinois at Chicago.;

  • 授予单位 University of Illinois at Chicago.;
  • 学科 Physics Molecular.;Chemistry Physical.;Physics General.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 154 p.
  • 总页数 154
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 遥感技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号