首页> 外文学位 >Improved segmentation and analysis of white matter tracts based on adaptive geodesic tracking.
【24h】

Improved segmentation and analysis of white matter tracts based on adaptive geodesic tracking.

机译:改进的基于自适应测地线跟踪的白质区域分割和分析。

获取原文
获取原文并翻译 | 示例

摘要

Recent developments in magnetic resonance imaging (MRI) provide an in vivo and noninvasive tool for studying the human brain. In particular, the detection of anisotropic diffusion in biological tissues provides the foundation for diffusion-weighted imaging (DWI), an MRI modality. This modality opens new opportunities for discoveries of the brain's structural connections. Clinically, DWI is often used to analyze white matter tracts to understand neuropsychiatric disorders and the connectivity of the central nervous system. However, due to imaging time required, DWI used in clinical studies has a low angular resolution. In this dissertation, we aim to accurately track and segment the white matter tracts and estimate more representative models from low angular DWI. We first present a novel geodesic approach to segmentation of white matter tracts from diffusion tensor imaging (DTI), estimated from DWI. Geodesic approaches treat the geometry of brain white matter as a manifold, often using the inverse tensor field as a Riemannian metric. The white matter pathways are then inferred from the resulting geodesics. A serious drawback of current geodesic methods is that geodesics tend to deviate from the major eigenvectors in high-curvature areas in order to achieve the shortest path. We propose a method for learning an adaptive Riemannian metric from the DTI data, where the resulting geodesics more closely follow the principal eigenvector of the diffusion tensors even in high-curvature regions. Using the computed geodesics, we develop an automatic way to compute binary segmentations of the white matter tracts. We demonstrate that our method is robust to noise and results in improved geodesics and segmentations. Then, based on binary segmentations, we present a novel Bayesian approach for fractional segmentation of white matter tracts and simultaneous estimation of a multitensor diffusion model. By incorporating a prior that assumes the tensor fields inside each tract are spatially correlated, we are able to reliably estimate multiple tensor compartments in fiber crossing regions, even with low angular diffusion-weighted imaging. This reduces the effects of partial voluming and achieves a more reliable analysis of diffusion measurements.
机译:磁共振成像(MRI)的最新发展为研究人脑提供了一种体内无创工具。特别是,生物组织中各向异性扩散的检测为扩散加权成像(DWI)(一种MRI方式)奠定了基础。这种方式为发现大脑的结构联系开辟了新的机会。在临床上,DWI通常用于分析白质束以了解神经精神疾病和中枢神经系统的连通性。但是,由于需要成像时间,临床研究中使用的DWI具有较低的角分辨率。本文旨在准确跟踪和分割白质束,并从低角度DWI估计出更具代表性的模型。我们首先提出了一种新的测地学方法,用于根据扩散张量成像(DTI)对白质束进行分割,该方法由DWI估算。测地线方法通常将反张量场用作黎曼度量,将脑白质的几何形状视为流形。然后从所得的大地测量学推断出白质途径。当前测地线方法的一个严重缺陷是,测地线倾向于偏离高曲率区域中的主要特征向量,以实现最短路径。我们提出了一种从DTI数据中学习自适应黎曼度量的方法,其中即使在高曲率区域中,生成的测地线也更紧密地遵循扩散张量的主要特征向量。使用计算的测地线,我们开发了一种自动方法来计算白质束的二进制分割。我们证明了我们的方法对噪声是鲁棒的,并导致了改进的测地线和分割。然后,基于二进制分割,我们提出了一种新的贝叶斯方法,用于白质束的分数分割和多张量扩散模型的同时估计。通过合并一个假设,即假设每个管道内的张量场在空间上是相关的,即使使用低角度扩散加权成像,我们也能够可靠地估计纤维交叉区域中的多个张量隔室。这样可以减少部分体积的影响,并可以更可靠地分析扩散测量结果。

著录项

  • 作者

    Hao, Xiang.;

  • 作者单位

    The University of Utah.;

  • 授予单位 The University of Utah.;
  • 学科 Computer Science.;Engineering Computer.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 123 p.
  • 总页数 123
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号