首页> 外文学位 >Generalized Uncertainty Quantification for Linear Inverse Problems in X-Ray Imaging.
【24h】

Generalized Uncertainty Quantification for Linear Inverse Problems in X-Ray Imaging.

机译:X射线成像中线性反问题的广义不确定性量化。

获取原文
获取原文并翻译 | 示例

摘要

In industrial and engineering applications, X-ray radiography has attained wide use as a data collection protocol for the assessment of material properties in cases where direct observation is not possible. The direct measurement of nuclear materials, par- ticularly when they are under explosive or implosive loading, is not feasible, and radiography can serve as a useful tool for obtaining indirect measurements. In such experiments, high energy X-rays are pulsed through a scene containing material of interest, and a detector records a radiograph by measuring the radiation that is not attenuated in the scene. One approach to the analysis of these radiographs is to model the imaging system as an operator that acts upon the object being imaged to produce a radiograph. In this model, the goal is to solve an inverse problem to re- construct the values of interest in the object, which are typically material properties such as density or areal density. The primary objective in this work is to provide quantitative solutions with uncertainty estimates for three separate applications in X-ray radiography: deconvolution, Abel inversion, and radiation spot shape recon- struction. For each problem, we introduce a new hierarchical Bayesian model for determining a posterior distribution on the unknowns and develop efficient Markov chain Monte Carlo (MCMC) methods for sampling from the posterior. A Poisson likelihood, based on a noise model for photon counts at the detector, is combined with a prior tailored to each application: an edge-localizing prior for deconvolution; a smoothing prior with non-negativity constraints for spot reconstruction; and a full covariance sampling prior based on a Wishart hyperprior for Abel inversion. After developing our methods in a general setting, we demonstrate each model on both synthetically generated datasets, including those from a well known radiation trans- port code, and real high energy radiographs taken at two U. S. Department of Energy laboratories.
机译:在工业和工程应用中,X射线射线照相术已被广泛用作数据收集协议,用于在无法直接观察的情况下评估材料性能。直接测量核材料,特别是当它们处于爆炸或爆炸性载荷下时,是不可行的,放射线照相可以作为获得间接测量的有用工具。在这样的实验中,高能X射线穿过包含感兴趣材料的场景,并且探测器通过测量场景中未衰减的辐射来记录射线照相。分析这些射线照片的一种方法是将成像系统建模为操作员,该操作员作用于要成像的对象以产生射线照片。在此模型中,目标是解决一个逆问题,以重建对象中的关注值,这些值通常是诸如密度或面密度之类的材料属性。这项工作的主要目的是为X射线摄影的三个独立应用提供定量解决方案,并提供不确定性估计:反卷积,Abel反演和辐射斑形状重建。对于每个问题,我们引入一种新的分层贝叶斯模型来确定未知数上的后验分布,并开发有效的马尔可夫链蒙特卡洛(MCMC)方法从后验中进行采样。泊松似然率基于检测器上光子计数的噪声模型,与针对每种应用量身定制的先验相结合:对卷积进行边缘定位的先验;具有非负约束的平滑先验用于点重建;以及基于Wishart超先验进行Abel反演的完整协方差采样先验。在一般情况下开发完我们的方法后,我们在合成生成的数据集上演示了每个模型,包括来自众所周知的辐射传输代码的数据集,以及在美国能源部两个实验室拍摄的真实高能射线照片。

著录项

  • 作者

    Fowler, Michael James.;

  • 作者单位

    Clarkson University.;

  • 授予单位 Clarkson University.;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 161 p.
  • 总页数 161
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号