首页> 外文学位 >Seed Dispersal and Dispersal Syndromes in Manzanitas, and Other Higher Plants.
【24h】

Seed Dispersal and Dispersal Syndromes in Manzanitas, and Other Higher Plants.

机译:Manzanitas和其他高等植物中的种子传播和传播综合征。

获取原文
获取原文并翻译 | 示例

摘要

Plants have evolved different means of dispersing seeds, generally by adaptation to abiotic and biotic vectors. Abiotic vectors include fluids like air and water, and biotic vectors include a wide variety of animal taxa. Animals generally disperse seeds through digestion, through incomplete recovery of stored food, and through discarding seeds after they have been dispersed intentionally or incidentally by attachment. Adaptations to various modes dispersal by plants result in suites of traits that match the behavior, physiology, or morphology of the vectors, and referred to as dispersal syndromes.;This core of this dissertation examines dispersal syndromes across different scales of biological organization. The first chapter attempted to determine how a single species of plant (greenleaf manzanita, Arctostaphylos patula) with an ambiguous dispersal syndrome is dispersed. I conducted a series of experiments to determine how the species' seeds are dispersed and what are the consequences of that particular mode of dispersal. The main conclusion redrew the boundary of how a scatter-hoarding syndrome is understood. Specifically, seeds need not be fused and can still be smaller than what has traditionally been understood as a nut syndrome dispersed by scatter-hoarding animals. Curiously, there is a relatively small endosperm reward, which should warrant further investigation by those attempting to study scatter-hoarding syndromes. A secondary main conclusion is that this syndrome appears to benefit seeds in fire-prone ecosystems because scatter-hoarding immediately deposits the seeds under the soil, and area that buffers the heat of fire. This is opposed to passive or abiotic dispersal, where seeds are thought to self-incorporate; the rates of which are highly variable and need to be studied in greater depth. The second chapter expands beyond the single-species perspective and used a morphometric analysis to compare the focal species of chapter one (greenleaf manzanita, Arctostaphylos patula) to other species in the same genus (manzanitas, Arctostaphylos). Because I had studied one species in depth, I conclude with high certainty that a number of species in the same genus are very likely to have the same mode of dispersal; namely, a scatter-hoarding syndrome. I additionally examined seed and fruit characteristics (diaspores) to find patterns across environmental gradients that are known to affect diaspore morphology, and only one was found (elevation). I compared manzanita seed mass to another, similar clade of sympatric plants (Ceanothus) and found that Ceanothus followed the predicted patterns and manzanita did not. This leads me to conclude that other factors are responsible for the diaspore morphology in manzanitas, and the hypothesis remains that it is animal-mediated seed dispersal. Lastly, in chapter 3, I scaled-out further and examined patterns of seed dispersal syndromes across a continent, with specific foci on patterns of distribution of all plant species, plant species without mutualist seed dispersers, plant species with mutualist seed dispersers, plant species distributions of the three major modes of animal dispersal (frugivory, scatter-hoarding, myrmecochory), and the differences between species and interactions across several environmental gradients at a large spatial scale. This was the largest investigation into seed dispersal syndromes of its kind. I not only found spatial patterns of different kinds of seed dispersal syndromes, but I found provocative patterns along environmental gradients, such as relatively fewer seed-dispersal mutualisms at higher elevations. One of the findings that I believe will resonate the most with the scientific community was our use of interaction abundance and diversity. I used what I believe to be a novel method that retains a maximal amount of information to describe patterns of interaction diversity. The most interesting finding of which is that there is a stronger relationship between interactions and latitude than species and latitude. (Abstract shortened by UMI.).
机译:通常通过适应非生物和生物载体,植物已进化出不同的散布种子的方式。非生物载体包括空气和水等流体,生物载体包括各种各样的动物类群。动物通常通过消化,不完全恢复储存的食物以及通过有意或无意地通过附着分散而丢弃种子来分散种子。植物对各种模式传播的适应会导致一系列与载体的行为,生理或形态相匹配的性状,被称为传播综合症。本论文的这一核心研究了跨不同规模的生物组织的传播综合症。第一章试图确定具有歧义散布综合症的单种植物(曼萨尼特绿叶,圆叶Arctostaphylos patula)如何散布。我进行了一系列实验,以确定该物种的种子如何散布以及这种特定散布方式的后果。主要结论重新界定了如何理解散布-积综合征。具体而言,种子不需要融合,并且仍可以比传统上被散布在动物身上的坚果综合征所散布的种子小。奇怪的是,胚乳奖励相对较小,应该由那些试图研究散布ho积综合征的人进行进一步调查。次要主要结论是,这种综合征似乎有利于易火生态系统中的种子,因为散布ho积会立即将种子沉积在土壤下,并缓冲火热。这与被动或非生物扩散相反,后者认为种子是自我结合的。其比率是高度可变的,需要更深入地研究。第二章超越了单一物种的视角,并进行了形态计量分析,以比较第一章的重点物种(绿叶曼萨尼塔,圆叶Arctostaphylos patula)和同一属下的其他物种(曼萨尼塔斯,Arctostaphylos)。因为我已经对一种物种进行了深入研究,所以可以肯定地说,同一属中的许多物种极有可能具有相同的传播方式。即散布-积综合征。我还检查了种子和果实的特征(水生孢子),以发现环境梯度中已知会影响水生孢子形态的模式,但只发现了一个(海拔)。我将曼萨尼塔种子的质量与另一个类似的同胞植物(Ceanothus)进行了比较,发现西奥索斯遵循了预测的模式,而曼萨尼塔则没有。这使我得出结论,曼沙尼塔斯(Manzanitas)的渗水孔形态是其他因素造成的,并且仍然假设这是动物介导的种子传播。最后,在第三章中,我进一步扩展并研究了整个大陆上种子传播综合症的模式,重点关注所有植物物种,没有互惠种子分散剂的植物物种,具有互惠种子分散剂的植物物种,植物物种的分布模式。动物散布的三种主要模式的分布(节食,散布ho积,防线虫),以及物种之间的差异以及在较大的空间尺度上跨多个环境梯度的相互作用。这是对此类种子传播综合症的最大调查。我不仅发现了各种种子传播综合征的空间格局,而且还发现了沿着环境梯度的挑衅性模式,例如在海拔较高的地区相对较少的种子传播共生关系。我相信与科学界最共鸣的发现之一是我们对互动丰富性和多样性的利用。我用我认为是一种新颖的方法来保留最大量的信息来描述交互多样性的模式。其中最有趣的发现是,相互作用和纬度之间的关系比物种和纬度之间的关系更强。 (摘要由UMI缩短。)。

著录项

  • 作者

    Moore, Christopher M.;

  • 作者单位

    University of Nevada, Reno.;

  • 授予单位 University of Nevada, Reno.;
  • 学科 Biology Ecology.;Biology Botany.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 141 p.
  • 总页数 141
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号