首页> 外文学位 >Development of artificial intelligence based regional flood frequency analysis technique
【24h】

Development of artificial intelligence based regional flood frequency analysis technique

机译:基于人工智能的区域洪水频率分析技术的发展

获取原文
获取原文并翻译 | 示例

摘要

Flood is one of the worst natural disasters, which brings disruptions to services and damages to infrastructure, crops and properties and sometimes causes loss of human lives. In Australia, the average annual flood damage is worth over $377 million, and infrastructure requiring design flood estimate is over $1 billion per annum. The 2010-11 devastating flood in Queensland alone caused flood damage over $5 billion. Design flood estimation is required in numerous engineering applications e.g., design of bridge, culvert, weir, spill way, detention basin, flood protection levees, highways, floodplain modelling, flood insurance studies and flood damage assessment tasks. For design flood estimation, the most direct method is flood frequency analysis, which requires long period of recorded streamflow data at the site of interest. This is not a feasible option at many locations due to absence or limitation of streamflow records. For these ungauged or poorly gauged catchments, regional flood frequency analysis (RFFA) is adopted. The use of RFFA enables the transfer of flood characteristics information from gauged to ungauged catchments. RFFA essentially consists of two principal steps: (i) formation of regions; and (ii) development of prediction equations. For developing the regional flood prediction equations, the commonly used techniques include the rational method, index flood method and quantile regression technique. These techniques adopt a linear method of transforming inputs to outputs. Since hydrologic systems are non-linear, RFFA techniques based on non-linear method can be a better alternative to linear methods. Among the non-linear methods, artificial intelligence based techniques have been widely adopted to various water resources engineering problems. However, their application to RFFA is quite limited. Hence, this research focuses on the development of artificial intelligence based RFFA methods for Australia. The non-linear techniques considered in this thesis include artificial neural network (ANN), genetic algorithm based artificial neural network (GAANN), gene-expression programing (GEP) and co-active neuro fuzzy inference system (CANFIS). This study uses data from 452 small to medium sized catchments from eastern Australia. In the development/training of the artificial intelligence based RFFA models, the selected 452 catchments are divided into two parts randomly: (i) training data set consisting of 362 catchments; and (ii) validation data set consisting of 90 catchments. It has been found that a RFFA model with two predictor variables i.e., catchment area and design rainfall intensity provides more accurate flood quantile estimates than other models with a greater number of predictor variables. The results show that when the data from all the eastern Australian states are combined to form one region, the resulting ANN based RFFA model performs better as compared with other candidate regions such as regions based on state boundaries, geographical and climatic boundaries and the regions formed in the catchment characteristics data space. In the training of the four artificial intelligence based RFFA models, no model performs the best for all the six average recurrence intervals over all the adopted statistical criteria. Overall, the ANN based RFFA model performs better than the three other models in the training/calibration. In this research, it also has been found that non-linear artificial intelligence based RFFA techniques can be applied successfully to eastern Australian catchments. Among the four artificial intelligence based models considered in this study, the ANN based RFFA model has demonstrated best performance based on independent split-sample validation, followed by the GAANN based RFFA model. The ANN based RFFA model has been found to outperform the ordinary least squares based RFFA model. Based on independent validation, the median relative error values for the ANN based RFFA model are found to be in the range of 35% to 44% for eastern Australia, which is comparable to the generalised least squares regression and region-of-influence based RFFA approach. The ANN based RFFA model exhibits no noticeable spatial trend in the relative error values. Furthermore, the relative error values of the ANN based RFFA model are found to be independent of catchment area. The findings of this research would help to recommend the most appropriate RFFA techniques in the 4th edition of Australian Rainfall and Runoff, which is due to be published in 2015.
机译:洪水是最严重的自然灾害之一,它给服务带来中断,并破坏基础设施,农作物和财产,有时还会造成人员伤亡。在澳大利亚,每年的平均洪灾损失价值超过3.77亿加元,需要设计洪灾估算的基础设施每年超过10亿加元。仅在昆士兰州,2010-11年就发生了毁灭性洪水,造成的洪灾损失超过50亿加元。在许多工程应用中都需要进行设计洪水估算,例如桥梁,涵洞,堰,溢洪道,滞留池,防洪堤,公路,漫滩建模,洪水保险研究和洪水损害评估任务的设计。对于设计洪水估算,最直接的方法是洪水频率分析,这需要在感兴趣的地点长时间记录流数据。由于缺少或限制流量记录,因此在许多位置都不可行。对于这些未开垦或计量不良的流域,采用了区域洪水频率分析(RFFA)。 RFFA的使用可以将洪水特征信息从已规范流域转移到未规范流域。 RFFA主要包括两个主要步骤:(i)形成区域; (ii)发展预测方程式。为了建立区域洪水预报方程,常用的技术有理,指数洪水和分位数回归技术。这些技术采用将输入转换为输出的线性方法。由于水文系统是非线性的,因此基于非线性方法的RFFA技术可以更好地替代线性方法。在非线性方法中,基于人工智能的技术已广泛应用于各种水资源工程问题。但是,它们在RFFA中的应用非常有限。因此,本研究专注于为澳大利亚开发基于人工智能的RFFA方法。本文考虑的非线性技术包括人工神经网络(ANN),基于遗传算法的人工神经网络(GAANN),基因表达程序(GEP)和协同神经模糊推理系统(CANFIS)。这项研究使用了来自澳大利亚东部的452个中小型流域的数据。在基于人工智能的RFFA模型的开发/培训中,将选定的452个流域随机分为两部分:(i)包括362个流域的培训数据集; (ii)由90个集水区组成的验证数据集。已经发现,具有两个预测变量,即流域面积和设计降雨强度的RFFA模型比具有更多预测变量的其他模型提供了更准确的洪水分位数估计。结果表明,将来自澳大利亚东部所有州的数据组合起来形成一个区域时,与其他候选区域(例如基于州边界,地理和气候边界的区域以及所形成的区域)相比,基于ANN的RFFA模型产生的效果更好在流域特征数据空间中。在训练四个基于人工智能的RFFA模型时,在所有采用的统计标准上,没有一个模型在所有六个平均复发间隔中表现最佳。总体而言,基于ANN的RFFA模型在训练/校准中的性能优于其他三个模型。在这项研究中,还发现基于非线性人工智能的RFFA技术可以成功地应用于澳大利亚东部流域。在这项研究中考虑的四种基于人工智能的模型中,基于ANN的RFFA模型已证明基于独立的拆分样本验证具有最佳性能,其次是基于GAANN的RFFA模型。已经发现基于ANN的RFFA模型优于基于普通最小二乘法的RFFA模型。基于独立验证,发现基于澳大利亚东部的基于ANN的RFFA模型的中位相对误差值在35%至44%的范围内,与广义最小二乘回归和基于影响区域的RFFA相当方法。基于ANN的RFFA模型在相对误差值中没有显示出明显的空间趋势。此外,发现基于ANN的RFFA模型的相对误差值与流域面积无关。这项研究的结果将有助于在将于2015年出版的《澳大利亚降雨与径流》第四版中推荐最合适的RFFA技术。

著录项

  • 作者

    Aziz, Kashif.;

  • 作者单位

    University of Western Sydney (Australia).;

  • 授予单位 University of Western Sydney (Australia).;
  • 学科 Civil engineering.;Artificial intelligence.;Hydrologic sciences.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 255 p.
  • 总页数 255
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号