首页> 外文学位 >Gas dynamics during bench-scale electrical resistance heating of water, TCE and dissolved CO2.
【24h】

Gas dynamics during bench-scale electrical resistance heating of water, TCE and dissolved CO2.

机译:台式电阻加热水,三氯乙烯和溶解的二氧化碳期间的气体动力学。

获取原文
获取原文并翻译 | 示例

摘要

In situ thermal treatment (ISTT) applications require successful gas capture for the effective remediation of chlorinated solvent dense non-aqueous phase liquid (DNAPL) source zones. Gas production and transport mechanisms during bench-scale electrical resistance heating (ERH) experiments were examined in this study using a quantitative light transmission visualization method. Processed images during water boiling indicated that gas bubble nucleation, growth and coalescence into a connected steam phase occurred at critical gas saturations of Sgc = 0.233 +/- 0.017, which allowed for continuous gas transport out of the heated zone. Critical gas saturations were lower than air-water emergence gas saturations of Sgm = 0.285 +/- 0.025, derived from the inflection point of ambient temperature capillary pressure-saturation curves. Coupled electrical current and temperature measurements were identified as a metric to assess gas phase development. Processed images during co-boiling of pooled trichloroethene (TCE) DNAPL and water indicated that discontinuous gas transport occurred above the DNAPL pool. When colder zones were introduced, condensation prevented the development of continuous steam channels and caused redistribution of DNAPL along the vapour front. These results suggest that water boiling temperatures should be targeted throughout the subsurface (i.e., from specific locations of DNAPL to extraction points) during ERH applications. Because convective heat loss and nonuniform power distributions have the potential to prevent the achievement of boiling temperatures, a thermal enhancement was developed where dissolved gas delivered to the target heated zone liberates from solution at elevated temperatures and increases gas production. Processed images of ERH-activated carbon dioxide (CO2) exsolution indicated that discontinuous gas transport occurred above saturations of S g = 0.070 +/- 0.022. Maximum exsolved gas saturations of Sg = 0.118 +/- 0.005 were sustained during continuous injection of the saturated CO2 solution into the heated zone. Estimated groundwater relative permeabilities of krw = 0.642 +/- 0.009 at these saturations are expected to decrease convective heat loss. Discontinuous transport of exsolved gas at sub-boiling temperatures also demonstrated the potential of the enhancement to bridge vertical gas transport through colder zones. In conclusion, sustained gas saturations and transport mechanisms were dependent on the mechanism of gas production and effects of condensation.
机译:原位热处理(ISTT)应用要求成功地捕获气体,以有效补救氯化溶剂密集的非水相液体(DNAPL)源区域。在这项研究中,使用定量光透射可视化方法检查了台式电阻加热(ERH)实验期间的气体产生和传输机理。在水沸腾过程中处理的图像表明,气泡的成核,生长和聚结成连接的蒸汽相在临界气体饱和度Sgc = 0.233 +/- 0.017时发生,这使得气体可以连续地从加热区运出。从环境温度毛细管压力-饱和度曲线的拐点得出,临界气体饱和度低于Sgm = 0.285 +/- 0.025的空气-水出现气体饱和度。耦合的电流和温度测量被确定为评估气相发展的度量。在合并的三氯乙烯(TCE)DNAPL和水共沸过程中处理的图像表明,在DNAPL池上方发生了不连续的气体传输。当引入较冷的区域时,凝结阻止了连续蒸汽通道的形成,并导致DNAPL沿着蒸汽前沿重新分布。这些结果表明,在ERH应用过程中,应将整个沸腾温度定为整个地下表面的温度(即从DNAPL的特定位置到提取点)。由于对流热损失和不均匀的功率分布可能会阻止达到沸腾温度,因此开发出了一种热增强技术,其中输送到目标加热区的溶解气体在高温下从溶液中释放出来,从而提高了气体产量。 ERH活化的二氧化碳(CO2)溶液的处理后图像表明,在S g = 0.070 +/- 0.022的饱和度以上,发生了不连续的气体传输。在将饱和的CO2溶液连续注入加热区的过程中,最大溶解气体饱和度为Sg = 0.118 +/- 0.005。在这些饱和度下,估计的地下水相对渗透率krw = 0.642 +/- 0.009可以减少对流热损失。在低于沸点的温度下不连续地输送溶解气体也显示出增强跨过较冷区域的垂直气体输送的潜力。总之,持续的天然气饱和度和输运机理取决于天然气的产生机理和冷凝作用。

著录项

  • 作者

    Hegele, Paul Rudolf.;

  • 作者单位

    Queen's University (Canada).;

  • 授予单位 Queen's University (Canada).;
  • 学科 Civil engineering.
  • 学位 Master
  • 年度 2014
  • 页码 202 p.
  • 总页数 202
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号