首页> 外文学位 >Error reduction, uncertainty quantification, and sensitivity analysis methods for microkinetic modeling: Application and insights into the catalytic conversion of ethanol on late transition metals.
【24h】

Error reduction, uncertainty quantification, and sensitivity analysis methods for microkinetic modeling: Application and insights into the catalytic conversion of ethanol on late transition metals.

机译:误差减少,不确定性定量化和用于微动力学建模的灵敏度分析方法:在晚期过渡金属上乙醇催化转化的应用和见解。

获取原文
获取原文并翻译 | 示例

摘要

Microkinetic modeling is a powerful computational technique for investigating chemical mechanisms under more realistic conditions than are possible with electronic structure calculations. Microkinetic models for species with more than two C atoms (e.g., the polyols and sugars arising in biomass processing) can require hundreds or thousands of parameters. Since it is not feasible to obtain all of the required parameters solely from high level electronic structure calculations (e.g., density functional theory, DFT) or by regression from experimental data, first principles-based semi-empirical methods (FPSEM) have been developed (typically by regression from DFT estimates) to enable the rapid estimation of the required kinetic parameters (species free energies and reaction activation energies), albeit with reduced accuracy compared to more rigorous methods. Despite the popularity of these methods, the level of accuracy that can be expected from them and the impact that this has on microkinetic model results has yet to be quantified.;Errors in FPSEM estimates arising from the regression process were quantified by comparison to the corresponding DFT values. Theoretical and numerical techniques were also employed to demonstrate how errors propagate when multiple types of FPSEM are used sequentially. It was found that linear Bronsted-Evans-Polanyi (BEP) correlations for estimating activation energies have the largest uncertainty of the methods currently in use. Furthermore, when used in conjunction with FPSEM-estimated species free energies, the BEP error dominates the error contributed by the species energies.;DFT calculations related to ethanol activation on close-packed facets of a variety of pure transition metals were carried out. The DFT results showed that the identities of the key steps for initial activation and selectivity to possible products can only be identified using microkinetic models. A fully DFT-parameterized model of ethanol steam reforming on Pt/Al2O 3 identified the rate determining step as the initial alpha C H activation with the selectivity to C-C cracking controlled by the C-C barrier in CHCO. The DFT results on all metals were used to develop FPSEM correlations for parameterizing a qualitative high throughput microkinetic model of ethanol hydrodeoxygenation. The high throughput model successfully predicted the qualitative behavior of the pure metals; oxophilic metals exhibited more C-O scission, whereas less oxophilic metals exhibited more C-C scission. A purely FPSEM-parameterized model of ethanol steam reforming was demonstrated to be in good qualitative agreement with the full DFT-parameterized model. After hierarchical refinement, the FPSEM-parameterized model was shown to be in quantitative agreement with the DFT-parameterized model.;Finally, Bayesian and frequentist methods were utilized to estimate the inherent variability in DFT results. The resulting uncertainty distributions were used as inputs in a global uncertainty quantification and derivative-based sensitivity analysis algorithm to determine the impact of DFT-based uncertainty on the results of the full DFT-parameterized model of ethanol steam reforming. The qualitative predictions were shown to be quite robust to parametric uncertainty, and the globally sensitive parameters were identified to be the enthalpies of key species and the initial alpha C-H abstraction.
机译:微观动力学建模是一种强大的计算技术,可用于比电子结构计算更现实的条件下研究化学机理。具有两个以上C原子的物种(例如,生物质加工中产生的多元醇和糖)的微观动力学模型可能需要数百或数千个参数。由于不可能仅通过高级电子结构计算(例如密度泛函理论,DFT)或通过从实验数据进行回归来获得所有必需的参数,因此已经开发了基于第一原理的半经验方法(FPSEM)(通常通过DFT估计值的回归来实现,从而能够快速估计所需的动力学参数(各种自由能和反应活化能),尽管与更严格的方法相比,其准确性有所降低。尽管这些方法很流行,但仍可以量化所期望的准确性水平及其对微动力学模型结果的影响。;通过与相应方法进行比较,可以量化FPSEM估计值的回归过程所产生的误差DFT值。理论和数值技术也被用来证明当顺序使用多种类型的FPSEM时误差如何传播。已经发现,用于估计活化能的线性布朗斯台德-埃文斯-波兰尼(BEP)相关性具有当前使用方法的最大不确定性。此外,当与FPSEM估计的物种自由能结合使用时,BEP误差主导了物种能量带来的误差。进行了与乙醇在各种纯过渡金属的紧密堆积面上的乙醇活化有关的DFT计算。 DFT结果表明,只有使用微动力学模型才能确定初始激活和对可能产物的选择性的关键步骤的身份。乙醇蒸汽在Pt / Al2O 3上重整的完全DFT参数化模型确定了速率确定步骤为初始αC H活化,并具有通过CHCO中C-C势垒控制的C-C裂解选择性。所有金属的DFT结果用于建立FPSEM相关性,以参数化乙醇加氢脱氧的定性高通量微动力学模型。高通量模型成功地预测了纯金属的定性行为。亲氧金属表现出更多的C-O断裂,而亲氧金属表现出更多的C-C断裂。实验证明,纯FPSEM参数化的乙醇蒸汽重整模型与完整的DFT参数化模型具有良好的定性一致性。经过分层细化后,FPSEM参数化模型与DFT参数化模型在数量上是一致的。最后,利用贝叶斯方法和频偏法来估计DFT结果的固有变异性。结果不确定性分布用作全局不确定性量化和基于导数的敏感性分析算法的输入,以确定基于DFT的不确定性对乙醇蒸汽重整的完整DFT参数化模型的结果的影响。定性预测显示出对参数不确定性非常稳健,并且全局敏感参数被确定为关键物种的焓和初始αC-H抽象。

著录项

  • 作者

    Sutton, Jonathan E.;

  • 作者单位

    University of Delaware.;

  • 授予单位 University of Delaware.;
  • 学科 Engineering Chemical.;Chemistry Analytical.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 378 p.
  • 总页数 378
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号