首页> 外文学位 >Roles of Macrophage Mitochondrial Oxidative Stress and Mitochondrial Fission in Atherosclerosis.
【24h】

Roles of Macrophage Mitochondrial Oxidative Stress and Mitochondrial Fission in Atherosclerosis.

机译:巨噬细胞线粒体氧化应激和线粒体裂变在动脉粥样硬化中的作用。

获取原文
获取原文并翻译 | 示例

摘要

Electron transportation (ET) coupled with oxidative phosphorylation (OXPHOS) in the mitochondria produces limited, physiologic levels of reactive oxygen species (ROS). While this process is adaptive under normal conditions, excessive mitochondrial oxidative stress (mitoOS) has been correlated with a number of diseases, including atherosclerotic vascular disease in humans. However, definitive evidence of causation and cell-specific pro-atherogenic mechanisms of mitoOS require further investigation.;The high level of interest in this topic, the human relevance, and the potential therapeutic implications prompted us to explore causation and mechanism with a focus on the key inflammatory cell type in atherosclerosis, the macrophage (Chapter 2). For this purpose, we used a recently described model, the mitochondrial catalase (mCAT) transgenic mouse, that decreases mitoOS in vivo. Normally, glutathione perioxidase is the endogenous mitochondrial enzyme that catalyzes the reduction of H2O2 and prevents its conversion into the most detrimental ROS hydroxyl nitrites. Catalase can carry out this role in peroxisomes, where it is exclusively located. The mCAT transgenic mouse expresses human catalase with a mitochondrial matrix-targeting motif, which quenches mitoOS and protects against mitoOS-induced damage. To focus on myeloid-derived cells in atherosclerosis, we used two strategies: transplantation of mCAT transgenic bone marrow cells into atheroprone Ldlr-/- mice and crossing Ldlr-/- mice with an mCATfl/-LysMCre model that expresses mCAT only in lysozyme M-expressing cells, notably differentiated macrophages. After 8 wk western type diet (WD) feeding, both models demonstrated evidence of decreased mitoOS in lesional macrophages, decreased atherosclerosis, suppression of Ly6chi monocyte infiltration, and lower levels of the monocyte chemotactic protein-1 (MCP-1). The decrease in lesional MCP-1 was associated with suppression of other markers of inflammation (iNOS and TNF-&agr;) and with decreased phosphorylation of the critical transcription factor RelA (NF-kappaB p65), indicating decreased activation of the pro-inflammatory NF-kappaB pathway. Using models of mitoOS in cultured macrophages, we showed that mCAT suppressed MCP-1 expression by decreasing activation of the Ikappa-kinase (IKK) - NF-kappaB (RelA) pathway. Taken together, we conclude that MitoOS in lesional macrophages amplifies early atherosclerotic lesion development by promoting NF-kappaB-mediated entry of monocytes and other inflammatory processes. In view of the mitoOS-atherosclerosis link in human atheromata, these findings reveal a potentially new therapeutic target to prevent the early progression of atherosclerosis.;The mitochondrial dynamic processes of fission and fusion influence and integrate with multiple physiologic and pathophysiologic processes. Mitochondrial fusion/fission dysregulation has been implicated in atherosclerosis, but little is known about the role of myeloid cell specific mitochondrial dynamics in the progression of atherosclerosis. Dynamin related protein 1(DRP1), a cytosolic GTPase family member, is one of the molecules that mediate mitochondrial fission. In the second part of this thesis (Chapter 3), we used western diet-fed Drp1fl/fl LysmCre+/-Ldlr-/-mice to determine the role of Mϕ mitochondrial fission in both early atherogenesis and advanced atherosclerosis. Our data thus far show that: (1) Mitochondria in lesional Mϕs are elongated in Drp1fl/fl LysmCre+/-Ldlr-/ mice by transmission electron microscopy (TEM) analysis; (2) Suppression of Mϕ mitochondrial fission does not affect early atherogenesis; (3) Inhibition of Mϕ mitochondrial fission leads to a striking increase of necrotic core area and the accumulation of apoptotic cells, which are likely due to the defective phagocytic clearance of apoptotic cells (efferocytosis) in the advanced stage of atherosclerosis in vivo; (4) DRP1-deficient Mϕs are defective in efferocytosis in vitro and in vivo. (5) The phagocytic deficiency in DRP1-deficient Mϕs is associated with a reduced level of uncoupling protein 2 (UCP2), a mitochondria protein required for continuous uptake and clearance of dead cells in phagocytes. We conclude that DRP1-mediated mitochondrial fission in Mϕs promotes the clearance of apoptotic cells and thereby blocks necrotic core formation in advanced atherosclerosis. This study indicates that mitochondrial fusion/fission could be a new therapeutic target to stabilize the advanced plaques and prevent acute atherothrombosis in humans. In terms of mechanism, we hypothesize that mitochondrial fission stabilizes UCP2 in the inner membrane of mitochondria. Further studies are required to elucidate how DRP1-UCP2 pathway maintains the efferocytosis capability in phagocytosis. (Abstract shortened by UMI.).
机译:线粒体中的电子运输(ET)加上氧化磷酸化(OXPHOS)会产生有限的生理水平的活性氧(ROS)。虽然此过程在正常条件下是适应性的,但线粒体的过度氧化应激(mitoOS)与许多疾病(包括人类的动脉粥样硬化性血管疾病)相关。然而,关于mitoOS的原因和细胞特异性促动脉粥样硬化机制的明确证据需要进一步研究。;对该主题的高度关注,与人类的相关性以及潜在的治疗意义促使我们探索因果关系和机制,重点是动脉粥样硬化的关键炎症细胞类型是巨噬细胞(第2章)。为此,我们使用了最近描述的模型,即线粒体过氧化氢酶(mCAT)转基因小鼠,该模型在体内可降低mitoOS。通常,谷胱甘肽过氧化物酶是内源性线粒体酶,它催化H2O2的还原并阻止其转化为对人体有害的ROS羟基亚硝酸盐。过氧化氢酶可以在过氧化物酶体中专门发挥作用。 mCAT转基因小鼠表达具有线粒体基质靶向基序的人过氧化氢酶,该酶可抑制mitoOS并保护其免受mitoOS诱导的损害。为了集中研究动脉粥样硬化中髓样来源的细胞,我们使用了两种策略:将mCAT转基因骨髓细胞移植到动脉粥样硬化Ldlr-/-小鼠中,以及将Ldlr-/-小鼠与仅在溶菌酶M中表达mCAT的mCATfl / -LysMCre模型杂交表达细胞,特别是分化的巨噬细胞。西方饮食8周西式饮食(WD)后,这两个模型均显示出病变巨噬细胞mitoOS降低,动脉粥样硬化降低,Ly6chi单核细胞浸润的抑制以及单核细胞趋化蛋白1(MCP-1)含量降低的证据。病变MCP-1的减少与其他炎症标志物(iNOS和TNF-α)的抑制以及关键转录因子RelA(NF-κBp65)的磷酸化降低有关,表明促炎性核因子的激活降低-kappaB途径。使用培养的巨噬细胞中的mitoOS模型,我们显示mCAT通过降低Ikappa激酶(IKK)-NF-kappaB(RelA)途径的激活来抑制MCP-1表达。两者合计,我们得出结论,病变巨噬细胞中的MitoOS通过促进NF-κB介导的单核细胞进入和其他炎症过程,放大了早期的动脉粥样硬化病变发展。鉴于人类动脉粥样硬化中的mitoOS-动脉粥样硬化联系,这些发现揭示了潜在的新治疗靶标,可防止动脉粥样硬化的早期发展。线粒体的裂变和融合动态过程影响并与多种生理和病理生理过程结合。线粒体融合/裂变失调与动脉粥样硬化有关,但对髓样细胞特异性线粒体动力学在动脉粥样硬化进展中的作用知之甚少。动力蛋白相关蛋白1(DRP1)是细胞质GTPase家族的成员,是介导线粒体裂变的分子之一。在本文的第二部分(第3章)中,我们使用西方饮食喂养的Drp1fl / fl LysmCre +/- Ldlr-/-小鼠确定M&phiv的作用。早期动脉粥样硬化和晚期动脉粥样硬化的线粒体裂变。迄今为止,我们的数据表明:(1)通过透射电子显微镜(TEM)分析,在Drp1fl / fl LysmCre +/- Ldlr- /小鼠中,病变M&的线粒体伸长了; (2)抑制Mϕ线粒体裂变不影响动脉粥样硬化的早期发生; (3)抑制Mϕ线粒体裂变导致坏死核心面积显着增加和凋亡细胞的积累,这很可能是由于体内动脉粥样硬化晚期凋亡细胞吞噬清除功能缺陷(胞吞作用)所致; (4)缺乏DRP1的Mφ在体外和体内在胞吞作用方面是缺陷的。 (5)缺乏DRP1的食管中的吞噬细胞缺乏与解偶联蛋白2(UCP2)的水平降低有关,解偶联蛋白2是连续摄取和清除吞噬细胞中死细胞所需的线粒体蛋白。我们得出结论,DRP1介导的线粒体裂变在M&phis中促进了凋亡细胞的清除,从而阻止了晚期动脉粥样硬化中坏死核心的形成。这项研究表明线粒体融合/裂变可能是稳定晚期斑块和预防人类急性动脉粥样硬化血栓形成的新治疗靶标。在机理上,我们假设线粒体裂变稳定了线粒体内膜中的UCP2。需要进一步的研究来阐明DRP1-UCP2途径如何在吞噬作用中保持胞吞能力。 (摘要由UMI缩短。)。

著录项

  • 作者

    Wang, Ying.;

  • 作者单位

    Columbia University.;

  • 授予单位 Columbia University.;
  • 学科 Health Sciences Medicine and Surgery.;Biology Physiology.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 135 p.
  • 总页数 135
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号