首页> 外文学位 >Numerical Modeling of Shear Bands and Dynamic Fracture in Metals.
【24h】

Numerical Modeling of Shear Bands and Dynamic Fracture in Metals.

机译:金属剪切带和动态断裂的数值模拟。

获取原文
获取原文并翻译 | 示例

摘要

Understanding the failure of metals at high strain rate is of utmost importance in the design of a broad range of engineering systems. Numerical methods offer the ability to analyze such complex physics and aid the design of structural systems. The objective of this research will be to develop reliable finite element models for high strain rate failure modelling, incorporating shear bands and fracture. Shear band modelling is explored first, and the subsequent developments are extended to incorporate fracture. Mesh sensitivity, the spurious dependence of failure on the discretization, is a well known hurdle in achieving reliable numerical results for shear bands and fracture, or any other strain softening model. Mesh sensitivity is overcome by regularization, and while details of regularization techniques may differ, all are similar in that a length scale is introduced which serves as a localization limiter.;This dissertation contains two main contributions, the first of which presents several developments in shear band modeling. The importance of using a monolithic nonlinear solver in combination with a PDE model accounting for thermal diffusion is demonstrated. In contrast, excluding one or both of these components leads to unreliable numerical results. The Pian-Sumihara stress interpolants are also employed in small and finite deformation and shown to significantly improve the computational cost of shear band modelling. This is partly due to the fact that fewer unknowns than an irreducible discretization result from the same mesh, and more significantly, the fact that convergence of numerical results upon mesh refinement is improved drastically. This means coarser meshes are adequate to resolve shear bands, alleviating some of the computational cost of numerical modelling, which are notoriously significant. Since extremely large deformations are present during shear banding, a mesh to mesh transfer algorithm is presented for the Pian Sumihara element and used as part of a remeshing strategy. A practical application of the numerical formulation developed is modelling the shear band failure of a friction stir welded aluminum joint under high rate loading. The energy absorption capacity of these joints are subsequently analyzed and found to be significantly weaker than untreated aluminum due to the nonhomogeneous material properties of the joint.;The second contribution is extending the shear band model described previously to account for fracture by way of the phase field method. The phase field method is modified to account for the contribution of inelastic deformation to the creation of fracture surfaces, which results in a rate and temperature dependent theory for fracture, due to the rate and temperature dependence of plasticity. The combined fracture and shear band model is shown to be capable of representing a wider spectrum of strain rates than either the phase field model or the shear band model alone.
机译:在各种工程系统的设计中,了解金属在高应变率下的失效至关重要。数值方法可以分析这种复杂的物理现象,并有助于结构系统的设计。这项研究的目的是为高应变率破坏建模开发可靠的有限元模型,其中包括剪切带和裂缝。首先探讨了剪切带建模,随后的发展扩展到包含了裂缝。网格灵敏度(失效对离散化的虚假依赖)是在获得可靠的剪切带和断裂数值或任何其他应变软化模型数值结果方面的众所周知的障碍。正则化克服了网格的敏感性,尽管正则化技术的细节可能有所不同,但都相似之处在于引入了长度标尺,该长度标尺用作局部化限制器。本论文包含两个主要贡献,其中第一个提出了剪切方面的一些进展。乐队建模。证明了结合使用单片非线性求解器和考虑热扩散的PDE模型的重要性。相反,排除这些成分中的一个或两个会导致数值结果不可靠。 Pian-Sumihara应力插值法还可以在较小且有限的变形中使用,并且可以显着提高剪切带建模的计算成本。部分原因是由于相同的网格导致的未知数少于不可约的离散化,更重要的是,网格改进后的数值结果的收敛性大大改善了。这意味着较粗的网格足以解决剪切带,从而减轻了数值建模的计算成本,这是众所周知的。由于在剪切带过程中会出现极大的变形,因此提出了Pian Sumihara单元的网格到网格转移算法,并将其用作重新网格化策略的一部分。所开发的数值公式的实际应用是对高速率载荷下搅拌摩擦焊接铝接头的剪切带破坏进行建模。随后分析了这些接头的能量吸收能力,发现由于接头的非均质材料特性,其能量比未处理的铝要弱得多。;第二个贡献是扩展了先前描述的剪切带模型,以解决相的断裂问题现场方法。修改了相场方法,以考虑到非弹性变形对断裂面产生的影响,由于塑性的速率和温度相关性,导致了断裂速率和温度相关的理论。与单独的相场模型或剪切带模型相比,组合的断裂带和剪切带模型显示出能够代表更大的应变率谱。

著录项

  • 作者

    McAuliffe, Colin James.;

  • 作者单位

    Columbia University.;

  • 授予单位 Columbia University.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 167 p.
  • 总页数 167
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号