首页> 外文学位 >Quantification of hydraulic effects from transverse instream structures in channel bends.
【24h】

Quantification of hydraulic effects from transverse instream structures in channel bends.

机译:定量分析河道弯道中横向河道结构对水力的影响。

获取原文
获取原文并翻译 | 示例

摘要

Meandering river channels possess hydraulic and geomorphic characteristics that occasionally place anthropogenic interests at risk. Loss of valuable land holdings and infrastructure due to outer-bank channel encroachment from erosion processes and complications for channel-bend navigation have prompted development of techniques for reconfiguration of instream hydraulics. Transverse instream structures are one type of technique and have been implemented in channel bends to reduce outer-bank erosivity and improve navigability. Instream structures use less material and have ecological and habitat benefits over traditional revetment type bank protection. Structures are typically constructed in series, extend from the outer-bank into the channel center, and are designed with various crest heights and slopes. Current design recommendations for the structures in natural channels provide generalized ranges of geometric parameters only; no specific information pertaining to hydraulic reconfiguration is provided. Understanding specific hydraulic response to alteration of geometric structure parameters is requisite for educated structure design.;Focusing on two types of transverse instream structures, the spur-dike and vane, a mathematical design tool was developed for the quantification and prediction of induced hydraulic response. A series of dimensionless groupings were formulated using parameters obtainable from field data of natural channels and grouped using dimensional analysis. Each dimensionless grouping had an identifiable hydraulic influence on induced hydraulics. A conglomerate mathematical expression was established as the framework for induced instream structure quantification.;The mathematical model was tailored to produce twenty-four hydraulic relationships through regression analysis utilizing a robust physical model dataset collected within rigid-bed, trapezoidal channel bends. Average and maximum velocity and boundary shear-stress data were segmented into outer-bank, centerline, and inner-bank regions and then normalized by bend-averaged baseline conditions. Velocity equations were developed for an all-structure dataset, a spur-dike dataset, and a vane dataset. Boundary shear-stress equations were developed for spur-dike structures only. Regression equations quantified laboratory hydraulics to a high level of accuracy. Equation response to independent parameter alteration coincided with continuity principles and physical hydraulic expectations. Methods performed well in application to extraneous natural channel data from the literature.;Developed methodologies from this research presented a fundamental addition to the current design procedures for the installation of structures in migrating channel bends. Quantification of the reduction of outer-bank erosive potential and increase at the shifted conveyance zone within natural channels was made possible using readily measured field data and the proposed methodology. Equations allow for previously unattainable investigation of configuration geometry combinations to meet installation objectives using simple mathematical formulas. Configuration geometry optimization to meet hydraulic design criteria using the proposed methods may hold substantial economic benefit over traditional design protocols.
机译:蜿蜒的河道具有水力和地貌特征,有时使人为利益受到威胁。由于侵蚀过程侵蚀了外岸河道,造成了宝贵的土地所有权和基础设施的损失,以及河道弯曲导航的复杂性,促使人们开发了重新配置河道水力的技术。横向河道结构是一种技术,已在河道弯道中实施,以减少河岸侵蚀性并改善通航性。与传统的护岸型河岸保护相比,河内结构使用的材料更少,具有生态和栖息地优势。结构通常是串联构造的,从外堤延伸到河道中心,并设计有各种波峰高度和坡度。当前关于自然通道结构的设计建议仅提供了几何参数的一般范围;没有提供与液压重新配置有关的特定信息。了解受几何结构参数改变的具体水力响应是受过良好教育的结构设计的必要条件。基于两种类型的横流结构,即丁坝和叶片,开发了一种数学设计工具,用于量化和预测感应水力响应。使用可从自然渠道的现场数据获得的参数来制定一系列无量纲分组,并使用量纲分析对其进行分组。每个无因次分组对诱导水力都有可识别的水力影响。建立了一个综合性的数学表达式作为诱导河道结构量化的框架。该数学模型经过定制,可通过使用刚性床,梯形通道弯道内收集的可靠物理模型数据集通过回归分析来产生二十四个水力关系。将平均和最大速度以及边界剪应力数据划分为外岸,中心线和内岸区域,然后通过折弯平均基线条件进行归一化。针对全结构数据集,丁坝数据集和叶片数据集开发了速度方程。边界剪应力方程式仅适用于丁坝结构。回归方程式将实验室液压系统量化到很高的准确性。方程对独立参数更改的响应与连续性原理和物理水力期望值吻合。这些方法在文献中对外部自然通道数据的应用中效果很好。;根据这项研究开发的方法论,为当前设计程序的基本添加,为在迁移通道弯道中安装结构提供了基础。利用易于测量的现场数据和建议的方法,可以对减少河岸侵蚀潜力的减少和在自然河道内转移的运输区增加的量化。公式允许使用简单的数学公式对配置几何形状组合进行以前无法实现的研究,以满足安装目标。使用所提出的方法来满足液压设计标准的构型几何优化可能比传统的设计方案具有可观的经济利益。

著录项

  • 作者

    Scurlock, Stephen Michael.;

  • 作者单位

    Colorado State University.;

  • 授予单位 Colorado State University.;
  • 学科 Engineering Civil.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 173 p.
  • 总页数 173
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号