首页> 外文学位 >Sodium Titanium Phosphate as Anode Materials for Aqueous Sodium-ion Batteries.
【24h】

Sodium Titanium Phosphate as Anode Materials for Aqueous Sodium-ion Batteries.

机译:磷酸钠钛盐作为钠离子电池水溶液的负极材料。

获取原文
获取原文并翻译 | 示例

摘要

Renewable energy technology has become one of the promising energy solutions in the future. However, limited by their cyclic behavior, large scale energy storage devices are needed to boost their adoptions in the market. The existing energy storage technologies have limitations that inhibit their adoptions for large scale applications. Our group suggests that one reasonable technology that might overcome these issues is the neutral pH aqueous electrolyte sodium-ion battery. One potential anode material is NaTi2(PO4)3, which has a relatively flexible NASICON skeleton structure and is known in general to have stable performance characteristics in extreme environments. In this work, there are four objectives to study this potential anode material:;NaTi2(PO4)3 has been successfully synthesized via a rapid microwave method. The highest specific capacity is around 85mAh/g has been demonstrated. The effect of different carbon materials (namely graphite and carbon nanotubes) and different processes of adding them (pre and post- synthesis) on the electrochemical performance for sodium titanium phosphate has been extensively studied. Graphite coated NaTi2(PO4) 3 with carbon nanotubes composite electrode has demonstrated a specific capacity of 130mAh/g around theoretical value at 0.1C rate.;The effect of the electrolyte (with different salt concentrations) and the oxygen dissolved in the electrolyte on Na0.44MnO2/NaTi 2(PO4)3 sodium-ion battery system has been studied. High rate performance with an increased salt concentration electrolyte has been discovered and the oxygen effect has been extensively studied. Different charge methods have been tested on the aqueous sodium-ion battery systems and the capacity fading mechanisms have been studied.;1) Develop a rapid method to synthesize electrochemically functional NaTi2(PO4)3. In this case "Electrochemically functional" means the material can store usable capacity for practical application in a composite electrode. 2) Quantify the effect of intimate carbon on NaTi2(PO4)3 electrochemical functionality. (Electrochemical functionality regards the capacity and rate capability of electrode materials) 3) Investigate the stability of NaTi2(PO 4)3 in pH and thermal extremes and the mechanism of capacity fading under different cycling conditions. 4) Examine the performance of NaTi 2(PO4)3 in high salt concentration electrolyte and Li+ electrolyte.
机译:可再生能源技术已成为未来有希望的能源解决方案之一。然而,受其周期性行为的限制,需要大型储能装置来提高其在市场中的采用率。现有的能量存储技术具有局限性,阻碍了其在大规模应用中的采用。我们的小组建议,一种可以克服这些问题的合理技术是中性pH水溶液电解质钠离子电池。一种潜在的阳极材料是NaTi2(PO4)3,它具有相对灵活的NASICON骨架结构,通常已知在极端环境下具有稳定的性能特征。在这项工作中,有四个目标来研究这种潜在的阳极材料:NaTi2(PO4)3已通过快速微波方法成功合成。已证明最高比容量约为85mAh / g。广泛研究了不同碳材料(即石墨和碳纳米管)以及添加它们的不同工艺(合成前和合成后)对磷酸钠钛电化学性能的影响。碳纳米管复合电极石墨包覆的NaTi2(PO4)3在0.1C速率下的理论容量约为130mAh / g,比容量;电解质(不同盐浓度)和电解质中溶解氧对Na0的影响研究了.44MnO2 / NaTi 2(PO4)3钠离子电池系统。已经发现,随着盐浓度电解质的增加,高速率性能也得到了广泛的研究。在含水钠离子电池系统上测试了不同的充电方法,并研究了容量衰减机理。; 1)开发一种快速方法来合成具有电化学功能的NaTi2(PO4)3。在这种情况下,“电化学功能”是指该材料可以存储在复合电极中实际应用的可用容量。 2)量化亲密碳对NaTi2(PO4)3电化学功能的影响。 (电化学功能取决于电极材料的容量和倍率性能)3)研究NaTi2(PO 4)3在pH和极端温度下的稳定性以及在不同循环条件下容量衰减的机理。 4)检查NaTi 2(PO4)3在高盐浓度电解液和Li +电解液中的性能。

著录项

  • 作者

    Wu, Wei.;

  • 作者单位

    Carnegie Mellon University.;

  • 授予单位 Carnegie Mellon University.;
  • 学科 Materials science.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 170 p.
  • 总页数 170
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号