首页> 外文学位 >Biochemical Characterization of Extremophile Fatty Acid Metabolism Enzymes for Use in Algal-Based Biofuel Production.
【24h】

Biochemical Characterization of Extremophile Fatty Acid Metabolism Enzymes for Use in Algal-Based Biofuel Production.

机译:用于基于藻类的生物燃料生产中的极端微生物脂肪酸代谢酶的生化特性。

获取原文
获取原文并翻译 | 示例

摘要

There is a renewed interest in renewable energy due to concerns over long-term fossil fuel supply, global warming, and global human population growth. Although promising alternative fuel sources have been derived from food crops (first-generation) and lignocellulose biomass (second generation), these feedstocks are not feasible for commercial use due to competition with food supplies and a requirement for technology development (pretreatment of biomass, enzymatic saccharification of the pretreated biomass, etc.) for the affordable conversion of lignocellulose biomass to fuel. For these reasons, there is a push to produce clean and renewable energy derived from algal biomass. The research reported here is focused on the biochemical characterization of fatty acid synthesis enzymes to augment microalgae-biofuel. Among microalgae, the highly productive, halophilic chlorophytes Dunaliella spp. are a rich source of lipids and have strong potential to be an economically viable source for renewable oil production.;To modify carbon flux through the fatty acid biosynthesis pathway and capture fatty acids incorporated into triacylglycerides, lipid biosynthesis genes from extremophiles were selected and biochemically characterized to establish their compatibility for functioning in Dunaliella to increase microalgal oil production. To this end, the acetyl-coenzyme A carboxylase (ACCase) from the bacterial halophile Chromohalobacter salexigens BAA-138 was recombinantly expressed in Escherichia coli to provide sufficient enzyme for biochemical characterization. The ACCase enzyme carries out the rate-limiting step during fatty acid synthesis (FAS), and it has been shown that increased ACCase expression in bacteria leads to elevated rates of FA production. Based on its rate-limiting role in the formation of fatty acids, it is proposed that by expressing a bacterial ACCase in microalgae the FAS limiting effects of transcriptional repression and feedback inhibition of the native microalgal ACCase could be mitigated.;In addition to increasing lipid production in microalgal strains, thermoactive thioesterases were also identified so that during high temperature conversion of lipids to fuel they could release the free fatty acids (FFAs) previously sequestered during algal cell growth as part of triacylglycerides. Therefore, heat stable thioesterases from Metallosphaera sedula DSM5348 and Sulfolobus solfataricus P2 were recombinantly expressed in E. coli to enable their biochemical characterization and evaluation for suitability for use in microalgae for improved biofuel production.
机译:由于对化石燃料的长期供应,全球变暖和全球人口增长的担忧,人们对可再生能源有了新的兴趣。尽管有前景的替代燃料来源来自粮食作物(第一代)和木质纤维素生物质(第二代),但由于与粮食供应竞争以及技术发展的要求(生物质预处理,酶促处理),这些原料在商业上不可行糖化预处理的生物质等),以可承受的价格将木质纤维素生物质转化为燃料。由于这些原因,人们正在努力生产源自藻类生物质的清洁和可再生能源。此处报道的研究集中在脂肪酸合成酶的生物化学表征上,以增加微藻生物燃料。在微藻中,高产的嗜盐绿藻杜氏藻属。是脂质的丰富来源,并且有潜力成为可再生石油生产的经济上可行的来源。;为了通过脂肪酸生物合成途径改变碳通量并捕获并入三酰甘油酯的脂肪酸,选择了来自极端微生物的脂质生物合成基因并进行了生化表征建立它们在杜氏藻中的功能以增加微藻油产量的相容性。为此,在细菌中重组表达来自嗜盐细菌嗜盐细菌嗜盐杆菌BAA-138的乙酰辅酶A羧化酶(ACCase),以提供足够的酶用于生物化学表征。 ACCase酶在脂肪酸合成(FAS)过程中执行限速步骤,并且已经表明,细菌中ACCase表达的增加导致FA产生速率的提高。基于其在脂肪酸形成中的限速作用,建议通过在微藻中表达细菌ACCase,可以减轻天然微藻ACCase的转录抑制和反馈抑制的FAS限制性作用。在微藻菌株的生产中,还鉴定了热活性硫酯酶,以便在脂质高温转化为燃料的过程中,它们可以释放先前在藻类细胞生长期间螯合的游离脂肪酸(FFA),作为甘油三酯的一部分。因此,来自金属小球藻DSM5348和Sulfolobus solfataricus P2的热稳定硫酯酶在大肠杆菌中重组表达,以使其能够进行生化表征和评估其在微藻中的适用性,以改善生物燃料的生产。

著录项

  • 作者

    Killens, Rushyannah R.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Biology Microbiology.;Alternative Energy.;Biology Molecular.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 161 p.
  • 总页数 161
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号