首页> 外文学位 >Impact of fracture spacing and mechanical parameter anisotropy on fracture width in horizontal wells in shales.
【24h】

Impact of fracture spacing and mechanical parameter anisotropy on fracture width in horizontal wells in shales.

机译:页岩水平井裂缝间距和力学参数各向异性对裂缝宽度的影响。

获取原文
获取原文并翻译 | 示例

摘要

The success of economically viable production of oil and gas from ultra-low permeability shale reservoirs depends on the creation of an extensive fracture network through hydraulic fracture stimulation. Multiple hydraulic fractures are created simultaneously in each stage to increase the surface area of contact between the wellbore and reservoir. The spacing between fractures is an important component to consider when developing an optimum stimulation design. An important aspect of shale rock properties is that shales are inherently anisotropic with a horizontal plane of isotropy (transversely isotropic) due to their finely layered structure. This study aims to provide an insight into the controlling effects of fracture spacing and different levels of rock property anisotropy on the fracture aperture during simultaneous fracture initiation and propagation. Multiple fracture propagation is simulated using 3-dimensional [3D] finite element models [FEM].;All simulations in this study include simultaneous propagation of four fractures in pre-defined planes using cohesive elements in a linear elastic medium. Numerous FEMs with varying spacing between fractures and varying levels of anisotropy are generated to analyze the effect of spacing and rock anisotropy on the fracture apertures. The modeling results show that there is a significant fracture width reduction in the center fractures when compared to the edge fractures across the entire range of fracture spacing included in the study. Previous studies present analyses on the effect of anisotropy on fractures whereas this study further investigates the individual effect of anisotropy on the edge fractures and center fractures. It can be taken further to simulate production rates and cumulative production over time and hence can be used as a guideline for different shale plays.
机译:从超低渗透性页岩储层经济地生产油气的成功取决于通过水力压裂增产形成广泛的裂缝网络。每个阶段同时产生多个水力压裂,以增加井眼与储层之间接触的表面积。在制定最佳的增产效果设计时,裂缝之间的间距是要考虑的重要组成部分。页岩岩石性质的一个重要方面是,由于页岩的层状结构细密,其固有的各向异性是具有各向同性的水平面(横向各向同性)。这项研究的目的是提供一个洞察力,同时控制裂缝的产生和传播,控制裂缝间距和不同水平的岩石特性各向异性对裂缝孔径的影响。使用3维[3D]有限元模型[FEM]模拟了多个裂缝的传播。本研究中的所有模拟都包括使用线性弹性介质中的内聚元素在预定平面内同时传播四个裂缝。生成了多个FEM,这些FEM具有不同的裂缝间距和不同的各向异性水平,以分析间距和岩石各向异性对裂缝孔径的影响。模拟结果表明,与整个研究中所包括的整个裂缝间距范围内的边缘裂缝相比,中心裂缝的裂缝宽度明显减小。先前的研究对各向异性对裂缝的影响进行了分析,而本研究则进一步研究了各向异性对边缘裂缝和中心裂缝的影响。可以进一步模拟随着时间的推移的生产率和累计产量,因此可以用作不同页岩气层的指南。

著录项

  • 作者

    Gokaraju, Deepak.;

  • 作者单位

    Missouri University of Science and Technology.;

  • 授予单位 Missouri University of Science and Technology.;
  • 学科 Engineering Petroleum.
  • 学位 M.S.
  • 年度 2014
  • 页码 104 p.
  • 总页数 104
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号