首页> 外文学位 >Design and development of a multi-degree-of-freedom nanopositioning system for self-assembly-based nanomanufacturing of DNA patterns.
【24h】

Design and development of a multi-degree-of-freedom nanopositioning system for self-assembly-based nanomanufacturing of DNA patterns.

机译:设计和开发基于DNA分子自组装纳米制造的多自由度纳米定位系统。

获取原文
获取原文并翻译 | 示例

摘要

This thesis presents the design, development, and control of multi-degree-of-freedom nanopositioning stage for applications in self-assembly-based nanomanufacturing of DNA patterns. High speed nanopositioning is needed in a variety of applications, such as nanomanufacture and construction. Particularly, nanopositioning developed in this work can be utilized to study the effect that inducing nano- to micro- scale oscillations in the DNA pattern self-assembly process has on the fabrication efficiency and quality. A system was designed to provide three degrees of freedom that provides both versatility and positioning precision to the study of the self-assembly process. Actual component manufacture was completed for two dimensional motions, with the third dimension designed for concept. Piezoelectric bimorph actuators were chosen for their low cost and high precision positioning to provide motion to the system. For the applications of the bimorph actuators in multi-dimensional positioning however, adverse effects, including the vibration dynamics and the nonlinear hysteresis behavior of the actuators, challenge the precision tracking of the desired trajectory. Moreover, incorporating multiple degrees of freedom inherits an undesirable cross-axis dynamics coupling effect between two or more directions of motion. In this project, two recently-developed iterative control techniques, the modeling-free inverse-based iterative control (MIIC) and the high-order difference modeling-free iterative control (HODMIIC) techniques were comparatively studied through experiments to tackle these critical issues. These two techniques were compared through their use in controlling one-dimensional non-coupled motion trajectories of a variety of amplitude and frequency conditions. The superior HODMIIC algorithm is then further proven through successful control of two-dimensional coupled motion trajectories across similar amplitude and frequencies.
机译:本文提出了多自由度纳米定位平台的设计,开发和控制,该平台可用于基于自组装的DNA图案纳米制造。在各种应用中需要高速纳米定位,例如纳米制造和构造。特别是,这项工作中开发的纳米定位技术可用于研究在DNA模式自组装过程中诱导纳米级至微米级振荡对制造效率和质量的影响。该系统旨在提供三个自由度,从而为自组装过程的研究提供多功能性和定位精度。实际的零件制造完成了二维运动,而第三维则是为概念设计的。选择压电双压电晶片执行器是因为其低成本和高精度定位,可为系统提供运动。但是,对于双压电晶片执行器在多维定位中的应用,包括执行器的振动动力学和非线性磁滞行为在内的不利影响对所需轨迹的精确跟踪提出了挑战。此外,合并多个自由度会在两个或多个运动方向之间继承不希望的跨轴动力学耦合效果。在该项目中,通过实验比较了两种最新开发的迭代控制技术,即无模型基于逆的迭代控制(MIIC)和高阶差分无模型迭代控制(HODMIIC)技术,以解决这些关键问题。通过比较这两种技术在控制各种振幅和频率条件下的一维非耦合运动轨迹中的使用,进行了比较。然后,通过成功控制跨相似幅度和频率的二维耦合运动轨迹,进一步证明了卓越的HODMIIC算法。

著录项

  • 作者单位

    Rutgers The State University of New Jersey - New Brunswick.;

  • 授予单位 Rutgers The State University of New Jersey - New Brunswick.;
  • 学科 Engineering Mechanical.;Engineering Aerospace.
  • 学位 M.S.
  • 年度 2014
  • 页码 108 p.
  • 总页数 108
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号