首页> 外文学位 >Learning patterns in dynamic graphs with application to biological networks.
【24h】

Learning patterns in dynamic graphs with application to biological networks.

机译:动态图中的学习模式及其在生物网络中的应用。

获取原文
获取原文并翻译 | 示例

摘要

We propose dynamic graph-based relational mining approach to learn structural patterns in graphs or networks as they change over time. There are a huge amount of data that can be represented as graphs, and a majority of the data have dynamic properties as well as structural properties. Most current graph-based data mining approaches focus on only static graphs, but few approaches address dynamic graphs. Our approach analyzes a dynamic graph containing a sequence of graphs, and discovers rules that capture the changes that occur between pairs of graphs in the sequence. These rules represent the graph rewrite rules that the first graph must go through to be isomorphic to the second graph. Then, our approach feeds the graph rewrite rules into a machine learning system that learns general transformation rules describing the types of changes that occur for a class of dynamic graphs. The discovered graph-rewriting rules show how graphs change over time, and the transformation rules show the repeated patterns in the structural changes.;We apply our approach to the analysis of the dynamics of biological networks with the cell. A cell is not only a basic unit to a life, but also an optimal system. This system is well-organized so that it can be represented as biological networks, which include various molecules and relationships between them. Moreover, biological networks also change their structure over time to express dynamics of the biological systems. In our research, we apply the dynamic graph-based relational mining approach to biological networks to understand how the biosystems change over time. We evaluate our results using coverage and prediction metrics, and compare our results to those in biological literature. Our results show important patterns in the dynamics of biological networks, for example, discovering known patterns in the biological networks. Results also show the learned rules accurately predict future changes in the networks.;We also evaluate our approach using two other data: synthetic data and Enron email data. We apply our approach to the synthetic data with several varied conditions, such as noise, size and density ratio. We also apply our approach to the Enron email data, and compare to an alternative approach.
机译:我们提出基于动态图的关系挖掘方法,以学习随着时间变化的图或网络中的结构模式。有大量数据可以表示为图形,并且大多数数据具有动态特性和结构特性。当前,大多数基于图的数据挖掘方法仅专注于静态图,而很少涉及动态图。我们的方法分析了包含图序列的动态图,并发现了捕获该序列图对之间发生的变化的规则。这些规则表示图形重写规则,第一个图形必须经过同构才能与第二个图形同构。然后,我们的方法将图重写规则输入到机器学习系统中,该系统学习通用的转换规则,这些规则描述了针对一类动态图发生的更改的类型。发现的图重写规则显示了图如何随时间变化,而转换规则则显示了结构变化中的重复模式。;我们将我们的方法应用于分析具有细胞的生物网络的动力学。细胞不仅是生命的基本单位,而且是最佳系统。该系统组织良好,因此可以表示为生物网络,其中包括各种分子及其之间的关系。而且,生物网络还随着时间改变其结构以表达生物系统的动力学。在我们的研究中,我们将基于动态图的关系挖掘方法应用于生物网络,以了解生物系统如何随时间变化。我们使用覆盖率和预测指标评估我们的结果,并将我们的结果与生物学文献中的结果进行比较。我们的结果显示了生物网络动力学中的重要模式,例如,发现了生物网络中的已知模式。结果还表明,学习到的规则可以准确预测网络中的未来变化。我们还使用其他两个数据(合成数据和Enron电子邮件数据)评估了我们的方法。我们将我们的方法应用于多种条件下的综合数据,例如噪声,大小和密度比。我们还将我们的方法应用于Enron电子邮件数据,并与其他方法进行比较。

著录项

  • 作者

    You, Chang Hun.;

  • 作者单位

    Washington State University.;

  • 授予单位 Washington State University.;
  • 学科 Biology Systematic.;Computer Science.;Biology Bioinformatics.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 130 p.
  • 总页数 130
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号