首页> 外文学位 >Power Conditioning and Stimulation for Wireless Neural Interface ICs.
【24h】

Power Conditioning and Stimulation for Wireless Neural Interface ICs.

机译:无线神经接口IC的功率调节和刺激。

获取原文
获取原文并翻译 | 示例

摘要

Brain machine interfaces have the potential to revolutionize our understanding of the brain, restore motor function, and improve the quality of life to patients with neurological con- ditions. In recent human trials, control of robotic prostheses has been demonstrated using micro-electrode arrays, which provide high spatio-temporal resolution and an electrical feed- back path to the brain. However, after implantation, scar tissue degrades the recording signal-to-noise ratio and limits the useful lifetime of the array. This work presents two systems which utilize wireless techniques to mitigate this effect and create high-density, long-term interfaces with the human brain.;A wirelessly powered 0.125mm2 65nm CMOS IC integrates four 1.5uW amplifiers (6.5uVrms input-referred noise with 10kHz bandwidth) with power conditioning and communication cir- cuitry. Multiple nodes free-float in the brain and communicate via backscatter to a wireless interrogator using a frequency-domain multiple access communication scheme. The full sys- tem, verified with wirelessly powered in vivo recordings, consumes 10.5uW and operates at 1mm range in air with 50mW transmit power.;A 65nm CMOS 4.78mm2 neuromodulation SoC integrates closed loop BMI functionality on a single IC which can be arrayed on a wireless sub-cranial platform. The IC consumes 348uA from an unregulated 1.2V supply while operating 64 acquisition channels with epoch compression (at an average firing rate of 50Hz) and engaging two stimulators (with a pulse width of 250us/phase, differential current of 150uA, and a pulse frequency of 100Hz). Com- pared to the state of the art neural SoCs, this represents the lowest area and power for the highest integration complexity achieved to date.
机译:脑机接口可能会改变我们对大脑的理解,恢复运动功能,并改善神经系统疾病患者的生活质量。在最近的人体试验中,已经证明使用微电极阵列可以控制机器人假体,该阵列提供了高的时空分辨率和通往大脑的电反馈路径。但是,植入后,疤痕组织会降低记录信噪比并限制阵列的使用寿命。这项工作提出了两个系统,这些系统利用无线技术来减轻这种影响并与人脑建立高密度的长期接口。;无线供电的0.125mm2 65nm CMOS IC集成了四个1.5uW放大器(6.5uVrms输入参考噪声和10kHz带宽),带有功率调节和通信电路。多个节点在大脑中自由浮动,并使用频域多址通信方案通过反向散射与无线询问器通信。完整的系统已通过无线供电的体内记录进行了验证,功耗为10.5uW,在1mm范围内以50mW的发射功率工作。65nm CMOS 4.78mm2神经调制SoC在单个可排列的IC上集成了闭环BMI功能。在无线子颅平台上。该IC从未经稳压的1.2V电源中消耗348uA,同时在64个采集通道上进行历时压缩(平均发射频率为50Hz),并接合两个刺激器(脉冲宽度为250us /相,差分电流为150uA,脉冲频率为1) 100Hz)。与先进的神经系统SoC相比,这代表了迄今为止实现的最高集成复杂性的最小面积和功耗。

著录项

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Electrical engineering.;Robotics.;Biomedical engineering.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 92 p.
  • 总页数 92
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号