首页> 外文学位 >Catalysis of propane oxidation and premixed propane-air flames.
【24h】

Catalysis of propane oxidation and premixed propane-air flames.

机译:丙烷氧化和丙烷-空气预混合火焰的催化。

获取原文
获取原文并翻译 | 示例

摘要

Improvements in deriving energy from hydrocarbon fuels will have a large impact on our efforts to transition to sustainable and renewable energy resources. The hypothesis for this work is that catalysis can extend the useful operating conditions for hydrocarbon oxidation and combustion, improve device efficiencies, and reduce pollutants. Catalysis of propane oxidation and premixed propane-air flames are examined experimentally, using a stagnation-flow reactor to identify the important physical and chemical mechanisms over a range of flow catalyst, and temperature conditions.;The propane oxidation studies consider five catalyst materials: platinum, palladium, SnO2, 90% SnO2 -- 10% Pt (by mass), and quartz. The volume fractions of CO2, O2, C 3H8, CO, NO and the electric power required to control the catalyst temperature quantify the activity of each catalyst for the equivalence ratios of &phis; = 0.67, 1.00, and 1.50, and over the catalyst temperature range 23-800°C. Quartz is used as a baseline and confirmed to be non-reactive at all conditions. 100% SnO2 has minimal reactivity. Platinum, palladium, and 90% SnO2 -- 10% Pt show similar trends and have the highest catalytic activity at &phis; = 1.50. Palladium and 90% SnO 2 -- 10% Pt show an increasing catalyst-activation temperature (Tsa) for decreasing &phis;, and platinum shows an approximately constant catalyst-activation temperature for decreasing &phis; (Tsa = 310°C). Of these the 90% SnO2 -- 10% Pt catalyst shows the lowest Tsa, occurring for the &phis; = 1.5 mixture (Tsa = 250°C).;The studies of premixed propane-air flames consider platinum and quartz stagnation surfaces for fuel-mixture velocities from 0.6-1.6 m/s. Five flame structures are observed: cool core envelope, cone, envelope, disk and ring flames. The lean-extinction limit, disk-to-ring flame transition &phis;, and the disk-flame to stagnation-plane distance are reported. Platinum inhibits the ring flame structure. The lean-extinction limit and disk-flame to stagnation-plane separation distance are insensitive to the stagnation-plane material.;The results set directions for development of improved catalyst systems, including the development of lean NOx catalysts with low light-off temperatures, methods to quantify catalyst aging and poisoning properties, and fundamental data to develop models of the catalyst chemistry for the design of novel energy generation techniques.
机译:从碳氢化合物燃料获取能源的改进将对我们向可持续和可再生能源资源过渡的努力产生重大影响。这项工作的假设是,催化作用可以扩展烃氧化和燃烧的有用操作条件,提高设备效率,并减少污染物。实验研究了丙烷氧化的催化作用和丙烷-空气预混合火焰,使用停滞流反应器确定了一系列流动催化剂和温度条件下的重要物理和化学机理。丙烷氧化研究考虑了五种催化剂材料:铂,钯,SnO2、90%SnO2-10%Pt(质量)和石英。 CO 2,O 2,C 3 H 8,CO,NO的体积分数和控制催化剂温度所需的电功率量化了当量比为φ时每种催化剂的活性。 = 0.67、1.00和1.50,并且在催化剂温度范围23-800℃下。石英用作基线,并确认在所有条件下均无反应。 100%SnO2具有最小的反应性。铂,钯和90%的SnO2-10%的Pt表现出相似的趋势,并且在φ处具有最高的催化活性。 = 1.50。钯和90%SnO 2-10%Pt显示出增加的催化剂活化温度(Tsa),以降低φ;铂显示出近似恒定的催化剂活化温度,以降低φ; (Tsa = 310℃)。其中90%的SnO2-10%的Pt催化剂显示最低的Tsa,发生在φ处。 = 1.5混合气(Tsa = 250°C);;对于丙烷-空气预混合火焰的研究考虑了铂和石英停滞表面对0.6-1.6 m / s的燃料混合物速度的影响。观察到五个火焰结构:冷却芯包络,圆锥,包络,盘状和环形火焰。报告了稀燃消光极限,盘到环的火焰转变φ以及盘从火焰到停滞平面的距离。铂会抑制环形火焰结构。稀燃消光极限和圆盘火焰至停滞平面的分离距离对停滞平面材料不敏感。结果为改进催化剂体系的开发指明了方向,包括开发低起燃温度的稀薄NOx催化剂,量化催化剂老化和中毒特性的方法,以及用于设计新型能量产生技术的催化剂化学模型的基础数据。

著录项

  • 作者

    Wiswall, James T.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Chemical.;Engineering Mechanical.;Energy.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 145 p.
  • 总页数 145
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号