首页> 外文学位 >The reduction of carbon dioxide emissions via carbon dioxide capture and solid oxide fuel cells.
【24h】

The reduction of carbon dioxide emissions via carbon dioxide capture and solid oxide fuel cells.

机译:通过二氧化碳捕集和固体氧化物燃料电池减少二氧化碳排放。

获取原文
获取原文并翻译 | 示例

摘要

The increase in CO2 emissions over past decades are the result of a growing dependence on fossil fuels. Examination of CO2 emission sources revealed that more than 33% of global CO2 emissions result from coal-fired power plants, which represent the largest stationary source of CO2. Two proposed approaches for reduction of CO2 emissions: (i) a short term (i.e. 7--10 years) capture of CO2 from coal-fired power plants and (ii) a long term (i.e. 10--15 years) approach is the replacement of coal-fired power plants by coal-based fuel cells. These approaches purify CO2 for sequestration. Carbon capture from existing power plants could be accomplished by passing the flue gas through a sorbent. The sorbent captures the CO2 from the flue gas then regenerated producing purified CO2. Direct coal fuel cells directly convert coal to electricity through the electrochemical oxidation of carbon. The mixing of air and coal does not occur in the fuel cell, leading to highly concentrated CO2 effluent for sequestration.;CO2 capture was investigated by transient flow, bed temperature measurement, and temperature programmed CO2 desorption coupled with IR effluent measurement of seventeen sorbents, which had SiO2, carbon, or beta zeolite as a support. The heat released during the exothermic adsorption of CO2 onto amine resulted in a bed temperature rise. The heat generated could be dissipated with a smaller particle size and greater thermal conductivity. The heat released was used to verify the capture capacity using a thermal camera and high throughput adsorber that screened thirteen sorbents simultaneously. The carbon initially investigated produced an ammonia odor and had a low capture capacity. The ammonia odor was the result of acid-base interaction between the support and amine groups. The use of a neutral carbon increased the capture capacity to 2.8 mmol CO2/g-sorbent. Beta zeolite, which captures 1.8 mmol CO2/g-sorbent, was found to contain acid sites that lowered the capture capacity. Molecular probing with benzene indicated a reduction of acidic sites with basic NH3 treatment and the reduction of surface --OH groups with basic NH4OH treatment. Beat zeolite treatment with NH3 and NH4OH resulted in a capture capacity of 2.0 and 2.2 mmol CO2/g-sorbent, respectively. Further DRIFTS IR investigation showed the amine interacted with the --OH groups of beta zeolite. Adsorption of CO2 formed carbonates, which may utilized the O atom from the interaction of the amine and support. The carbonate formation profile was parallel to H-bonding indicating adsorbed CO2 had a dual-interaction where a carbonate and H-bond was formed. This dual interaction may have inhibited gas and adsorbed phase CO2 exchange observed on metal surfaces.;LSCF was investigated as an anode material for a direct CH4 solid oxide fuel cell (SOFC) through unsteady state response coupled with mass spectrometer analysis. Comparison of a Ni anode and LSCF/Ni anode was done to determine if LSCF promoted the electrochemical oxidation of carbon. The introduction of 50% CH4 into the LSCF/Ni anode SOFC produced a greater amount of CO than the Ni anode, indicating the LSCF increased the initial intrinsic rate of carbon oxidation. The H2 and CO profile produced by the LSCF/Ni anode lacked a parallel structure indicating different reaction pathways. Current-voltage measurement over LSCF/Ni during 50% CH 4 led to a higher formation of CO than that of the Ni anode, confirming a high intrinsic rate of formation. Removal of CH4 from the Ni anode resulted in a rapid drop in current; removal of CH4 from the LSCF/Ni anode resulted in a slow decrease in current and the formation of CO and CO2. The formation of CO2 on the LSCF/Ni anode suggests the presences H2 and CH4 inhibit the electrochemical oxidation of carbon to CO2. The formation of CO2 over the LSCF/Ni anode indicates LSCF ability to completely electrochemically oxidize carbon, which was not observed on the Ni anode. Structural degradation led to failure the Ni anode cell after 0.5 hours of pure CH4 operation and after 2 hours on the LSCF/Ni anode. These results suggest LSCF promotes the electrochemical oxidation of carbon resulting in a lower intrinsic rate of formation of coke in the Ni/LSCF SOFC.
机译:在过去的几十年中,二氧化碳排放量的增加是对化石燃料日益依赖的结果。对CO2排放源的调查表明,全球超过33%的CO2排放来自燃煤电厂,这是最大的固定CO2排放源。提出了两种减少CO2排放的方法:(i)短期(即7--10年)从燃煤电厂捕获CO2,以及(ii)长期(即10--15年)方法是煤基燃料电池替代燃煤发电厂。这些方法净化了用于隔离的二氧化碳。现有烟气中的碳捕集可以通过使烟气通过吸附剂来完成。吸附剂从烟道气中捕集二氧化碳,然后进行再生,产生纯化的二氧化碳。直接煤炭燃料电池通过碳的电化学氧化将煤炭直接转化为电能。燃料电池中不会发生空气和煤的混合,从而导致高浓度的CO2流出物被隔离。;通过瞬态流,床温测量和程序升温的CO2解吸结合IR流出物测量十七种吸附剂,研究了CO2捕集,以SiO2,碳或β沸石为载体。在胺上放热吸收CO2时释放的热量导致床温升高。所产生的热量可以以较小的粒径和较大的导热率消散。所释放的热量用于通过热像仪和高通量吸附器(同时筛选出13种吸附剂)来验证捕集能力。最初研究的碳产生氨味,捕获能力低。氨味是载体和胺基之间酸碱相互作用的结果。中性碳的使用将捕获能力提高到2.8 mmol CO2 / g吸附剂。捕获1.8 mmol CO2 / g吸附剂的β沸石被发现含有降低捕获能力的酸性部位。用苯进行分子探测表明,碱性NH3处理可减少酸性位点,碱性NH4OH处理可减少表面-OH基团。用NH 3和NH 4 OH打浆沸石处理分别产生2.0和2.2mmol CO 2 / g-吸附剂的捕获能力。进一步的DRIFTS IR研究表明,胺与β沸石的-OH基团相互作用。吸附形成二氧化碳的碳酸盐,可以利用胺和载体相互作用产生的O原子。碳酸盐的形成剖面与H键平行,表明吸附的CO2具有双重相互作用,形成了碳酸盐和H键。这种双重相互作用可能抑制了在金属表面上观察到的气体和吸附相的CO2交换。通过非稳态响应和质谱分析,研究了LSCF作为直接CH4固体氧化物燃料电池(SOFC)的阳极材料。进行镍阳极和LSCF / Ni阳极的比较以确定LSCF是否促进了碳的电化学氧化。将50%CH4引入LSCF / Ni阳极SOFC所产生的CO量要比Ni阳极大,这表明LSCF提高了碳氧化的初始本征速率。 LSCF / Ni阳极产生的H2和CO分布图缺乏平行结构,表明不同的反应路径。在50%CH 4的条件下,通过LSCF / Ni进行的电流电压测量导致形成的CO高于Ni阳极,从而证实了较高的固有形成速率。从镍阳极中除去CH4导致电流迅速下降。从LSCF / Ni阳极除去CH4导致电流缓慢降低,并形成CO和CO2。 LSCF / Ni阳极上CO2的形成表明H2和CH4的存在抑制了碳电化学氧化成CO2。在LSCF / Ni阳极上形成的CO2表明LSCF能够完全电化学氧化碳的能力,这在Ni阳极上没有观察到。在纯CH4操作0.5小时后和在LSCF / Ni阳极上2小时后,结构退化导致Ni阳极电池失效。这些结果表明,LSCF促进了碳的电化学氧化,从而导致Ni / LSCF SOFC中焦炭形成的固有速率降低。

著录项

  • 作者

    Fisher, James C., II.;

  • 作者单位

    The University of Akron.;

  • 授予单位 The University of Akron.;
  • 学科 Engineering Chemical.;Engineering Environmental.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 206 p.
  • 总页数 206
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号