首页> 外文学位 >Functional Electrical Stimulation of Peripheral Nerve Tissue Via Regenerative Sieve Microelectrodes
【24h】

Functional Electrical Stimulation of Peripheral Nerve Tissue Via Regenerative Sieve Microelectrodes

机译:通过再生筛微电极对周围神经组织的功能性电刺激

获取原文
获取原文并翻译 | 示例

摘要

Functional electrical stimulation (FES) of peripheral nervous tissue offers a promising method for restoring motor function in patients suffering from complex neurological injuries. However, existing microelectrodes designed to stimulate peripheral nerve are unable to provide the type of stable, selective interface required to achieve near-physiologic control of peripheral motor axons and distal musculature. Regenerative sieve electrodes offer a unique alternative to such devices, achieving a highly stable, selective electrical interface with independent groups of regenerated nerve fibers integrated into the electrode. Yet, the capability of sieve electrodes to functionally recruit regenerated motor axons for the purpose of muscle activation remains largely unexplored. The present dissertation aims to examine the potential role of regenerative electrodes in FES applications by testing the unifying hypothesis that sieve electrodes of various design and geometry are capable of selectively stimulating regenerated motor axons for the purpose of controlling muscle activation. This hypothesis was systematically tested through a series of experiments examining the ability of both micro-sieve electrodes and macro-sieve electrodes to achieve a stable interface with peripheral nerve tissue, electrically activate small groups of regenerated motor axons, and selectively recruit motor units present in multiple distal muscles. Custom sieve electrodes were fabricated via sacrificial photolithography. In vivo testing in rat sciatic nerve validated the ability of chronically-implanted regenerative sieve electrodes to support motor axon regeneration and integrate into peripheral nerve tissue. Sieve electrode geometry was shown to strongly modulate axonal regeneration, muscle reinnervation, and device functionality, as high-transparency macro-sieve electrodes facilitated superior neural integration and functional recovery compared to low-transparency micro-sieve electrodes. Inclusion of neurotrophic factors into sieve electrode assemblies increased axonal regeneration through implanted electrodes and improved the quality of the sieve/nerve interface in low-transparency devices. In vivo testing in rat sciatic nerve further validated the ability of chronically-implanted regenerative sieve electrodes to facilitate FES of regenerated motor axons and selective recruitment of distal musculature. Selective stimulation of regenerated motor axons using implanted micro- and macro-sieve electrodes enabled effective, external control of muscle activation within anterior and posterior compartments of the lower leg (e.g. ankle plantarflexion / dorsiflexion). Selective activation of distal musculature was achieved through modulation of stimulus amplitude, channel activation, and field steering. In summary, the present body of work provides initial evidence of the utility of regenerative electrodes as a means of selectively interfacing peripheral nerve tissue for the purpose of restoring muscle activation and motor control. These findings further highlight the clinical potential of implantable microelectrodes capable of intimately integrating into host neural tissue.
机译:周围神经组织的功能性电刺激(FES)为恢复患有复杂神经系统损伤的患者的运动功能提供了一种有前途的方法。但是,现有的设计用于刺激周围神经的微电极无法提供实现周围运动轴突和远端肌肉组织的近生理控制所需的稳定,选择性的界面类型。再生筛电极为此类设备提供了独特的替代方案,可通过集成到电极中的独立的再生神经纤维组实现高度稳定的选择性电接口。然而,在很大程度上仍未探索过筛电极为肌肉活化目的功能性募集再生的运动轴突的能力。本论文旨在通过测试以下假设来检验再生电极在FES应用中的潜在作用:各种设计和几何形状的筛电极能够选择性地刺激再生的运动轴突,以控制肌肉活化。通过一系列实验系统检验了该假设,该实验检查了微筛电极和大筛电极与周围神经组织的稳定界面,电激活再生的运动轴突的小组以及选择性地募集存在于其中的运动单元的能力。多处远端肌肉。定制的筛电极是通过牺牲光刻法制造的。在大鼠坐骨神经中进行的体内试验验证了长期植入的再生筛电极支持运动轴突再生并整合到周围神经组织中的能力。筛电极的几何形状显示出可强烈调节轴突再生,肌肉神经支配和设备功能,因为与低透明度的微筛电极相比,高透明度的宏观筛电极促进了卓越的神经整合和功能恢复。筛电极组件中包含神经营养因子,可通过植入电极增加轴突再生,并改善低透明度设备中筛/神经界面的质量。在大鼠坐骨神经中的体内测试进一步验证了长期植入再生筛电极促进再生运动轴突的FES和选择性募集远端肌肉组织的能力。使用植入的微型和大型筛电极选择性刺激再生运动轴突,可以有效,外部控制小腿前部和后部隔室内的肌肉激活(例如脚踝plant屈/背屈)。远端肌肉组织的选择性激活是通过刺激幅度的调制,通道激活和场控制来实现的。总而言之,目前的工作提供了再生电极作为选择性地连接周围神经组织以恢复肌肉激活和运动控制的手段的实用性的初步证据。这些发现进一步突出了能够与宿主神经组织紧密整合的可植入微电极的临床潜力。

著录项

  • 作者

    MacEwan, Matthew R.;

  • 作者单位

    Washington University in St. Louis.;

  • 授予单位 Washington University in St. Louis.;
  • 学科 Biomedical engineering.;Neurosciences.;Electrical engineering.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 240 p.
  • 总页数 240
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号