首页> 外文学位 >Modeling of high pressure radial piston pumps.
【24h】

Modeling of high pressure radial piston pumps.

机译:高压径向柱塞泵的建模。

获取原文
获取原文并翻译 | 示例

摘要

Agarwal, Pulkit. M.S.M.E., Purdue University, December 2014. Modeling of High Pressure Radial Piston Pumps. Major Professor: Andrea Vacca, School of Mechanical Engineering.;A comprehensive multi-domain simulation tool for investigating the operation of radial piston machines has been developed in the present study. The simulation tool is capable of analyzing the displacing action of the machine parts as well as the power losses occurring in the lubricating interfaces which makes it useful for supporting the design process of radial piston units. The reference machine analyzed in this study is a radial piston pump of rotating cam type design used for high pressure applications. Though the modeling process and calculations in this analysis pertain mostly to this specific design, the concepts involved and numerical procedure can be applied to generic designs of radial piston machines. A lumped parameter based model for complete hydraulic system of the pump has been formulated which can predict the main flow parameters in the pump namely flow rate and pressure at pump outlet. This model can be easily coupled with other hydraulic components present in a circuit to model the systems level performance of the machine. However, an improvement in pump design calls for a detailed investigation of internal components present in the pump specifically the lubricating interfaces present in the pump. The lumped parameter model is capable of generating boundary conditions to simulate the flow behavior in these lubricating interfaces. A separate model for piston-cylinder interface and cam-piston interface has been developed in this study to incorporate the detailed features involved in each of them.;The piston/cylinder lubricating interface represents one of the most critical design elements of radial piston machines. The interface performs the functions of a.;hydrodynamic bearing by supporting the radial loads acting on the piston, seals the high pressure fluid in the displacement chamber and reduces friction between the moving parts.;However, operating in the Elastohydrodyamic Lubrication (EHL) regime, it also represents one of the main sources of power loss due to viscous friction and leakage flow. An accurate prediction of instantaneous film thickness, pressure field, and load carrying ability is necessary to create more efficient interface designs. For this purpose, a fully coupled numerical solver has been developed to capture fluid-structure interaction phenomena in the lubricating interface at isothermal fluid conditions. This model considers the piston micro-motion during one complete cycle of pump operation.;The radial loads acting on the piston have a significant influence on piston micro-motion and hence the power losses in piston-cylinder interface. These loads are caused majorly by the friction forces existing between the cam and piston. A more accurate evaluation of performance parameters in the piston-cylinder interface can be achieved by calculating the instantaneous friction acting between the cam and piston under lubricating conditions. Different approaches for evaluating this friction coefficient were considered ranging from a simplified assumptions of pure sliding, pure rolling to a detailed analysis of lubricant flow between the cam-piston surfaces. For this purpose, a line contact EHL model was developed that can predict viscous friction forces generated between the cam and piston at changing surface velocities and contact loads. Also, instantaneous pressure field and film thickness can be predicted to a reasonable accuracy. This model is capable of analyzing multiple configurations of cam-piston interface design.;The numerical results presented in this thesis provide detailed information of the pump performance parameters at different operating conditions thereby confirming the utility of the simulation tool to support the design process of these units and assist in creation of more energy efficient pumps. Validation of the numerical model developed in this study with experimental results can be a part of future work.
机译:阿加瓦尔,普尔基特。硕士学位,普渡大学,2014年12月。高压径向柱塞泵的建模。主要教授:机械工程学院的Andrea Vacca;本研究中已开发出一种用于研究径向活塞机运行情况的综合多域仿真工具。该仿真工具能够分析机器零件的位移作用以及润滑界面中发生的功率损耗,这对于支持径向活塞单元的设计过程非常有用。本研究中分析的参考机器是用于高压应用的旋转凸轮型径向柱塞泵。尽管此分析中的建模过程和计算大部分与该特定设计有关,但是所涉及的概念和数值过程可以应用于径向活塞机的通用设计。建立了基于参数集总模型的完整液压系统模型,该模型可以预测泵中的主要流量参数,即泵出口处的流量和压力。该模型可以轻松地与回路中存在的其他液压组件耦合,以对机器的系统级性能进行建模。然而,对泵设计的改进要求详细研究泵中存在的内部组件,特别是泵中存在的润滑界面。集总参数模型能够生成边界条件,以模拟这些润滑界面中的流动行为。在这项研究中,已经为活塞-气缸接口和凸轮-活塞接口开发了一个单独的模型,以结合它们各自涉及的详细功能。活塞/气缸润滑接口代表了径向活塞机最关键的设计元素之一。该界面通过支撑作用在活塞上的径向载荷来执行流体动力轴承的功能,将置换腔中的高压流体密封并减少活动部件之间的摩擦;但是,在弹性水动力润滑(EHL)方式下运行,它也是由于粘滞摩擦和泄漏流造成的功率损耗的主要来源之一。要创建更有效的界面设计,必须准确预测瞬时薄膜厚度,压力场和承载能力。为此,已经开发出一种完全耦合的数值求解器,以捕获在等温流体条件下润滑界面中的流体-结构相互作用现象。该模型考虑了泵运行一个完整周期中的活塞微运动。作用在活塞上的径向载荷对活塞微运动有很大影响,因此在活塞-缸体界面的功率损耗也很大。这些载荷主要是由凸轮和活塞之间存在的摩擦力引起的。通过计算润滑条件下凸轮与活塞之间的瞬时摩擦,可以对活塞-气缸界面中的性能参数进行更准确的评估。人们考虑了各种评估该摩擦系数的方法,从简化的纯滑动假设,纯滚动的假设到详细分析凸轮活塞表面之间的润滑剂流动,一应俱全。为此,开发了一种线接触EHL模型,该模型可以预测在变化的表面速度和接触载荷下凸轮与活塞之间产生的粘性摩擦力。而且,瞬时压力场和膜厚度可以被预测为合理的精度。该模型能够分析凸轮-活塞界面设计的多种配置。本文的数值结果提供了不同工况下泵性能参数的详细信息,从而证实了仿真工具在支持这些设计过程中的实用性。单位,并协助创建更节能的泵。在本研究中开发的具有实验结果的数值模型的验证可能是未来工作的一部分。

著录项

  • 作者

    Agarwal, Pulkit.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Mechanical.
  • 学位 M.S.M.E.
  • 年度 2014
  • 页码 146 p.
  • 总页数 146
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号