首页> 外文学位 >Advanced Structural Electrode Materials for Lithium-Ion Batteries and Lithium-Sulfur Batteries.
【24h】

Advanced Structural Electrode Materials for Lithium-Ion Batteries and Lithium-Sulfur Batteries.

机译:锂离子电池和锂硫电池的高级结构电极材料。

获取原文
获取原文并翻译 | 示例

摘要

Batteries, as one of the most appropriate and promising electrical energy storage systems, are playing a vital role in future use of electrical energy. Significant efforts have been placed on exploring high specific capacity electrode for advanced lithium based batteries, including lithium-ion batteries and lithium-sulfur batteries.;Lithium-ion batteries and lithium-sulfur batteries are two distinguishing energy storage systems that have different energy storage mechanisms. Rechargeable lithium-on batteries have two Li+ intercalation electrodes, in which the electrical and chemical energies are interconverted via a reversible Li+ intercalation/de-intercalation process between the electrodes. Rechargeable lithium-sulfur batteries operate by reducing elemental sulfur in the discharge process to produce a series of soluble lithium polysulfides to ultimately form solid lithium sulfide and converting lithium sulfide back to elemental sulfur in the charge process.;For lithium-ion batteries, the research focused on the use of silicon as an anode material since it has the highest theoretical capacity of 4200 mAh/g, which is four times higher than that of graphite (375 mAh/g). Silicon has the greatest potential to replace graphite for use in next-generation lithium ion batteries. However, challenges from its semi-conductive property and the huge volume expansion (300%) during the lithiation process greatly hinder silicon's application into lithium-ion batteries. The study of how to harness silicon into an electrode with superior chemical performance has been one of the driving factors for this work. Gaining this understanding in regards to silicon may also provide potential processing routes to other active materials, sensitive to volume change in lithium-ion batteries. In this work, silicon and carbon composites, including silicon-carbon nanofibers and silicon-carbon nanotubes, were designed and developed to try to solve the problems caused by the silicon volume expansion, enabling a specific capacity of more than 1000 mAh/g as a promising anode materials for lithium-ion batteries.;In addition to lithium-ion batteries, advanced cathode design of lithium-sulfur batteries was studied and discussed. The motivations for studying lithium-sulfur batteries come from two most important merits of sulfur: (a) abundance and low cost, and (b) high capacity of 1675 mAh/g. Lithium-sulfur batteries have a 3~5 fold higher theoretical energy density than conventional lithium-ion batteries. For sulfur cathodes, the main barriers to commercial production are their short cycle life, low charging efficiency, and high self-discharge rate, which are caused by the non-conductivity of sulfur and the migration of the dissolved sulfur reduction products out of the cathode region. Therefore, the electrochemical properties of sulfur and its cathode structures deserve investigations and discussions in this work. An advanced sulfur electrode was firstly developed and studied in my work, which exhibited a good cycling performance with a high sulfur loading (2.6 mg/cm2) and high sulfur content (65%) as cathodes for lithium-sulfur batteries.
机译:电池作为最合适,最有前途的电能存储系统之一,在未来的电能使用中起着至关重要的作用。在开发用于高级锂基电池(包括锂离子电池和锂硫电池)的高比容量电极方面已经做出了重大努力;锂离子电池和锂硫电池是两种具有不同能量存储机制的独特能量存储系统。可再充电锂电池具有两个Li +嵌入电极,其中电能和化学能通过电极之间的可逆Li +嵌入/去嵌入过程相互转换。可充电锂硫电池通过在放电过程中还原元素硫,产生一系列可溶性多硫化锂,最终形成固态硫化锂,并在充电过程中将硫化锂转化回元素硫,从而进行工作。由于硅具有最高的理论容量4200 mAh / g,是石墨的最高理论容量(375 mAh / g)的四倍,因此专注于使用硅作为阳极材料。硅具有替代石墨的最大潜力,可用于下一代锂离子电池。但是,由于其半导体性能以及在锂化过程中的巨大体积膨胀(300%)带来的挑战,极大地阻碍了硅在锂离子电池中的应用。关于如何将硅用于化学性能优异的电极的研究一直是这项工作的驱动因素之一。对硅的了解还可以为对锂离子电池体积变化敏感的其他活性材料提供潜在的加工路线。在这项工作中,设计并开发了包括硅碳纳米纤维和硅碳纳米管在内的硅和碳复合材料,以解决由硅体积膨胀引起的问题,从而使比容量达到1000 mAh / g以上。除了锂离子电池,还研究和讨论了锂硫电池的高级阴极设计。研究锂硫电池的动机来自于硫的两个最重要的优点:(a)丰富且低成本,以及(b)1675 mAh / g的高容量。锂硫电池的理论能量密度是传统锂离子电池的3至5倍。对于硫阴极,商业生产的主要障碍是其循环寿命短,充电效率低和自放电率高,这是由于硫的非导电性和溶解的硫还原产物从阴极中迁移出来引起的。区域。因此,硫及其阴极结构的电化学性质值得在这项工作中进行研究和讨论。在我的工作中,首先开发并研究了一种先进的硫电极,该电极具有良好的循环性能,具有高的硫负载量(2.6 mg / cm2)和高的硫含量(65%)作为锂硫电池的正极。

著录项

  • 作者

    Fu, Kun.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Engineering Materials Science.;Energy.;Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 223 p.
  • 总页数 223
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号