首页> 外文学位 >Spatiotemporal Relationship Aided Field Estimation & Route Planning for Large Scale Mobile Cyber Physical Systems
【24h】

Spatiotemporal Relationship Aided Field Estimation & Route Planning for Large Scale Mobile Cyber Physical Systems

机译:大规模移动网络物理系统的时空关系辅助场估计和路径规划

获取原文
获取原文并翻译 | 示例

摘要

A large scale mobile Cyber Physical System (CPS), which consists of a large number of mobile devices interacting with each other and the physical environment, is an integrated system of computation, networking and physical processes. In recent years, CPSs have gradually transformed how people interact with and control the physical world in many domains: agriculture, transportation, health-care, manufacturing, energy, defense, aerospace, buildings, etc.;A large scale mobile CPS understands the physical world by sensing data to estimate the status of physical fields. This thesis focuses on two major tasks of large scale mobile CPSs: field estimation and route planning. The task of field estimation is to use sensing data of physical fields to estimate two statuses: 1) physical field: a physical quantity, represented by a number or tensor, that has a value for each point in space and time, such as air pollution, temperature, moisture, noise, traffic, etc; 2) system status: the conditions of the system's mobile devices such as location, mobility, sensing accuracy, etc. The task of route planning is to design the routes for mobile devices in the system for data collection, which guarantees field estimation to achieve application specific accuracy.;However, the real system faces two main challenges: lacking dense coverage and lacking even distribution of data collection. A dense coverage requires that the percentage of the overall space and time period being sensed by the mobile devices in the system should exceed a minimum number. An even distribution requires the information entropy of data distribution over space and time should exceed a minimum number. To improve the coverage and evenness of the data distribution, route planning designs routes for mobile devices to make sure that they sense data at designated locations and times. Since route planning relies on field estimation, especially system status estimation (e.g. locations of mobile devices), inaccuracy from field estimation deteriorates route planning performance. In addition, many real-world systems are semi-controllable. Only a fraction of total mobile devices follow the suggested routes from the system. This leads to two challenging problems: how to select mobile devices for route planning and how to design routes for the selected mobile devices.;The thesis presents a spatiotemporal relationship aided framework for large scale mobile CPSs, which incorporates a new spatiotemporal relationship analysis layer to address the challenges of lacking dense coverage and lacking even distribution of data collection. By utilizing the spatiotemporal relationships of physical field and system status in the spatiotemporal relationship analysis layer, which are discussed in Section 2, models and algorithms are designed to improve the performance of major system tasks: field estimation (physical field and system status) and route planning. I deploy real testbed experiments and extensive simulations with real world collected data to validate the system design. As a part of the evaluation for uncontrolled to controlled motion aspects of our system, air pollution sensors are deployed on the taxi-based testbed to collect data in the city of Shenzhen for 2 years in collaboration with Tsinghua University. In addition, a swarm of 8 micro aerial vehicles are deployed in an indoor environment for autonomous navigation. The results show incorporating the spatiotemporal relationship analysis layer can achieve 2.1x and 6x error reduction on physical field and system status estimation and 3x improvement on route planning. This illustrates the potential of the spatiotemporal relationship analysis layer to improve the performance of field estimation and route planning in large scale mobile CPSs.
机译:大型移动网络物理系统(CPS)由大量彼此交互并与物理环境交互的移动设备组成,是计算,网络和物理过程的集成系统。近年来,CPS逐渐改变了人们在许多领域与物理世界的交互方式和控制方式,包括农业,交通运输,医疗保健,制造业,能源,国防,航空航天,建筑等;大型移动CPS可以理解物理通过感知数据来估计物理领域的状态。本文主要研究大型移动CPS的两个主要任务:现场估计和路线规划。场估计的任务是使用物理场的感测数据来估计两种状态:1)物理场:由数字或张量表示的物理量,它对空间和时间的每个点都有值,例如空气污染,温度,湿度,噪音,交通状况等; 2)系统状态:系统中移动设备的位置,移动性,传感精度等条件。路由规划的任务是为系统中的移动设备设计路由以进行数据收集,从而保证现场估计以实现应用但是,实际系统面临两个主要挑战:缺乏密集的覆盖范围和缺乏均匀的数据收集分布。密集的覆盖范围要求系统中的移动设备感测到的总空间和时间段的百分比应超过最小值。均匀分布需要空间上数据分布的信息熵,并且时间应超过最小值。为了提高数据分发的覆盖范围和均匀性,路由计划会为移动设备设计路由,以确保它们在指定的位置和时间感知数据。由于路线规划依赖于现场估算,尤其是系统状态估算(例如移动设备的位置),因此现场估算的不准确性会使路线规划性能恶化。此外,许多现实世界的系统都是半可控的。只有少数移动设备遵循系统建议的路线。这带来了两个挑战性的问题:如何选择移动设备进行路线规划以及如何为所选移动设备设计路线。本文提出了一种针对大规模移动CPS的时空关系辅助框架,该框架结合了新的时空关系分析层解决缺乏密集的覆盖面和缺乏均匀的数据收集分布的挑战。通过在时空关系分析层中利用物理场与系统状态的时空关系(在第2节中进行了讨论),设计了模型和算法来提高主要系统任务的性能:场估计(物理场和系统状态)和路由规划。我部署了真实的测试平台实验和带有真实世界收集数据的大量模拟,以验证系统设计。作为我们系统不受控制到受控运动方面评估的一部分,空气污染传感器已部署在基于出租车的试验台上,与清华大学合作在深圳进行了两年的数据收集。此外,在室内环境中部署了8架微型飞行器群,用于自主导航。结果表明,结合时空关系分析层可以在物理场和系统状态估计上实现2.1x和6x的错误减少,并在路线规划上实现3x的改善。这说明了时空关系分析层在大规模移动CPS中改善现场估计和路线规划性能的潜力。

著录项

  • 作者

    Chen, Xinlei.;

  • 作者单位

    Carnegie Mellon University.;

  • 授予单位 Carnegie Mellon University.;
  • 学科 Electrical engineering.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 184 p.
  • 总页数 184
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号