首页> 外文学位 >Genetic and Environmental Control of Lignin Biosynthesis and C Emission from Crop Stover
【24h】

Genetic and Environmental Control of Lignin Biosynthesis and C Emission from Crop Stover

机译:作物秸秆木质素生物合成和碳排放的遗传和环境控制

获取原文
获取原文并翻译 | 示例

摘要

Lignin is the second most abundant terrestrial biopolymer in the world and provides structural strength to plants. The maize brown midrib (bm) mutants accumulate less and altered lignin relative to non-mutants. Maize bm4-encoded folylpolyglutamate synthase functions to generate the preferred substrate of folate-dependent enzymes, such as bm2-encoded methylenetetrahydrofolate reductase. Consistent with bm4's predicted function upstream of bm2, both mutants display a 7--10% reduction in lignin content and a 16--40% increase in S/G lignin ratio relative to wild-type. This interplay between lignin biosynthesis and various metabolic processes is also seen between lignin and stover carbon emission. As climate change intensifies, the continued accumulation of CO2 in the atmosphere poses potentially irreversible threats to the environment and economy. Exploiting the natural carbon cycle of plants to sequester excess atmospheric C in the soil is a promising strategy for climate remediation. To assess the potential of this approach, stover from over 6,000 maize and sorghum genotypes was incubated in soil and assayed for C emission. While compositional traits, such as lignin, explain up to 48% of variation in C emission, environment still plays a major role. Dynamics of C emission vary across environments and seem to be, at least partially, controlled by the age and lignin content of the stover assayed. Despite environmental influence on C emission, adequate genetic control exists for this trait to allow for moderate heritability estimates and genomic prediction accuracy. Additionally, GWAS for C emission identifies numerous promising candidate genes that could serve as breeding targets for generating varieties with enhanced carbon sequestration potential.
机译:木质素是世界上第二大的陆地生物聚合物,为植物提供结构强度。相对于非突变体,玉米棕色中肋(bm)突变体积累的木质素少且发生改变。玉米bm4编码的叶酰聚谷氨酸合酶的功能是生成叶酸依赖性酶(例如bm2编码的亚甲基四氢叶酸还原酶)的优选底物。与bm4在bm2上游的预测功能一致,这两个突变体均显示相对于野生型木质素含量降低7--10%,S / G木质素比率提高16--40%。木质素和秸秆碳排放之间也可以看到木质素生物合成与各种代谢过程之间的相互作用。随着气候变化加剧,大气中二氧化碳的持续积累对环境和经济构成潜在的不可逆转的威胁。利用植物的自然碳循环来隔离土壤中过量的大气碳是一种有希望的气候修复策略。为了评估这种方法的潜力,将来自6,000多个玉米和高粱基因型的秸秆在土壤中保温并测定C的排放。尽管木质素等成分性状可以解释多达48%的C排放变化,但环境仍然起着主要作用。碳排放的动态因环境而异,似乎至少部分受所测秸秆的年龄和木质素含量的控制。尽管环境对碳排放有影响,但对于此性状存在足够的遗传控制,以允许进行适度的遗传力估计和基因组预测准确性。此外,用于碳排放的GWAS可以鉴定出许多有前途的候选基因,这些基因可以作为育种目标,以产生具有更高碳固存潜力的品种。

著录项

  • 作者

    Hill-Skinner, Sarah Ellen.;

  • 作者单位

    Iowa State University.;

  • 授予单位 Iowa State University.;
  • 学科 Plant sciences.;Genetics.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 194 p.
  • 总页数 194
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号