首页> 外文学位 >Local cooling despite global warming.
【24h】

Local cooling despite global warming.

机译:尽管全球变暖,但局部降温。

获取原文
获取原文并翻译 | 示例

摘要

How much warmer is the ocean surface than the atmosphere directly above it? Part 1 of the present study offers a means to quantify this temperature difference using a nonlinear one-dimensional global energy balance coupled ocean--atmosphere model ("Aqua Planet"). The significance of our model, which is of intermediate complexity, is its ability to obtain an analytical solution for the global average temperatures. Preliminary results show that, for the present climate, global mean ocean temperature is 291.1 K whereas surface atmospheric temperature is 287.4 K. Thus, the surface ocean is 3.7 K warmer than the atmosphere above it. Temporal perturbation of the global mean solution obtained for "Aqua Planet" showed a stable system. Oscillation amplitude of the atmospheric temperature anomaly is greater in magnitude to those found in the ocean. There is a phase shift (a lag in the ocean), which is caused by oceanic thermal inertia. Climate feedbacks due to selected climate parameters such as incoming radiation, cloud cover, and CO2 are discussed. Warming obtained with our model compares with Intergovernmental Panel on Climate Change's (IPCC) estimations. Application of our model to local regions illuminates the importance of evaporative cooling in determining derived air-sea temperature offsets, where an increase in the latter increases the systems overall sensitivity to evaporative cooling. In part 2, we wish to answer the fairly complicated question of whether global warming and an increased freshwater flux cause Northern Hemispheric warming or cooling. Starting from the assumption of the ocean as the primary source of variability in the Northern hemispheric ocean--atmosphere coupled system, we employed a simple non--linear one--dimensional coupled ocean--atmosphere model similar to the "Aqua Planet" model but with additional advective heat transports. The simplicity of this model allows us to analytically predict the evolution of many dynamical variables of interest such as, the strength of the Atlantic Meridional overturning circulation (AMOC), temperatures of the ocean and atmosphere, mass transports, salinity, and ocean--atmosphere heat fluxes. Model results show that a reduced AMOC transport due to an increased freshwater flux causes cooling in both the atmosphere and ocean in the North Atlantic (NA) deep--water formation region. Cooling in both the ocean and atmosphere can cause a reduction of the ocean--atmosphere temperature difference, which in turn reduces heat fluxes in both the ocean and atmosphere. For present day climate parameters, the calculated critical freshwater flux needed to arrest AMOC is 0.14 Sv. Assuming a constant atmospheric zonal flow, there is both minimal reduction in the AMOC strength, as well as minimal warming of the ocean and atmosphere. This model provides a conceptual framework for a dynamically sound response of the ocean and atmosphere to AMOC variability as a function of increased freshwater flux. The results are qualitatively consistent with numerous realistic coupled numerical models of varying complexity.
机译:海洋表面比其正上方的大气温度高多少?本研究的第1部分提供了一种使用非线性一维全球能量平衡耦合海洋-大气模型(“水行星”)来量化此温差的方法。我们模型的重要性是中等复杂性,它具有获得全球平均温度的解析解的能力。初步结果表明,在当前气候下,全球平均海洋温度为291.1 K,而地表大气温度为287.4K。因此,地表海洋比其上方的大气温度高3.7K。为“水行星”获得的全球平均解的时间扰动显示出一个稳定的系统。大气温度异常的振荡幅度在幅度上大于在海洋中发现的幅度。存在相移(海洋中的滞后),这是由海洋热惯性引起的。讨论了由于选定的气候参数(例如辐射,云量和二氧化碳)而产生的气候反馈。通过我们的模型获得的变暖与政府间气候变化专门委员会(IPCC)的估计进行了比较。我们的模型在局部区域的应用说明了蒸发冷却在确定导出的海气温度偏移中的重要性,后者的增加会增加系统对蒸发冷却的整体敏感性。在第二部分中,我们希望回答一个相当复杂的问题,即全球变暖和淡水通量增加是否会导致北半球变暖或变冷。从假设海洋是北半球海洋与大气耦合系统的主要变化源开始,我们采用了类似于“水行星”模型的简单非线性一维耦合海洋与大气模型但附加的对流传热。该模型的简单性使我们能够分析预测许多感兴趣的动力学变量的演变,例如大西洋子午线翻转环流(AMOC)的强度,海洋和大气层的温度,物质运输,盐度和海洋-大气层热通量。模型结果表明,由于淡水通量增加而导致AMOC运移减少,导致北大西洋(NA)深水形成区的大气和海洋同时冷却。海洋和大气层的冷却都会导致海洋-大气温度差的减小,进而减少海洋和大气层的热通量。对于当今的气候参数,计算出的阻止AMOC所需的临界淡水通量为0.14 Sv。假设恒定的区域纬向流量,则AMOC强度的减小最小,海洋和大气的变暖也最小。该模型为海洋和大气对AMOC变化的动态声音响应提供了一个概念性的框架,该响应是淡水通量增加的函数。结果在质量上与各种复杂度不同的现实耦合数值模型一致。

著录项

  • 作者单位

    The Florida State University.;

  • 授予单位 The Florida State University.;
  • 学科 Physical oceanography.;Atmospheric sciences.;Geophysics.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 93 p.
  • 总页数 93
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号