首页> 外文学位 >Time-Domain Analysis of Fractional Wave Equations and Implementations of Perfectly Matched Layers in Nonlinear Ultrasound Simulations.
【24h】

Time-Domain Analysis of Fractional Wave Equations and Implementations of Perfectly Matched Layers in Nonlinear Ultrasound Simulations.

机译:分数阶方程的时域分析和非线性超声模拟中完美匹配层的实现。

获取原文
获取原文并翻译 | 示例

摘要

The attenuation of ultrasound propagating in human tissue follows a power law with respect to frequency that is modeled by several different fractional partial differential equations. These models for the power law attenuation of medical ultrasound have been developed using fractional calculus, where each contains one or more time-fractional or space-fractional derivatives. To demonstrate the similarities and differences in the solutions to causal and noncausal fractional partial differential equations, time-domain Green's functions are calculated numerically for the fractional wave equations. For three time-fractional wave equations, namely the power law wave equation, the Szabo wave equation, and the Caputo wave equation, these Green's functions are evaluated for water with a power law exponent of y=2, liver with a power law exponent of y=1.139, and breast with a power law exponent of y=1.5. Simulation results show that the noncausal features of the numerically calculated time-domain response are only evident in the extreme nearfield region and that the causal and the noncausal Green's functions converge to the same time-domain waveform in the farfield. When noncausal time-domain Green's functions are convolved with finite-bandwidth signals, the noncausal behavior in the time-domain is eliminated, which suggests that noncausal time-domain behavior only appears in a very limited set of circumstances and that these time-fractional models are equally effective for most numerical calculations.;For the calculation of space-fractional wave equations, time-domain Green's functions are numerically calculated for two space-fractional models, namely the Chen-Holm and Treeby-Cox wave equations. Numerical results are computed for these in breast and liver. The results show that these two space-fractional wave equations are causal everywhere. Away from the origin, the time-domain Green's function for the dispersive Treeby-Cox space-fractional wave equation is very similar to the time-domain Green's functions calculated for the corresponding time-fractional wave equations, but the time-domain Green's function for the nondispersive Chen-Holm space-fractional wave equation is quite different. To highlight the similarities and differences between these, time-domain Green's functions are compared and evaluated at different distances for breast and liver parameters. When time-domain Green's functions are convolved with finite-bandwidth signals, the phase velocity difference in these two space-fractional wave equations is responsible for a time delay that is especially evident in the farfield.;The power law wave equation is also utilized to implement a perfectly matched layer (PML) for numerical calculations with the Khokhlov--Zabolotskaya--Kuznetsov (KZK) equation. KZK simulations previously required a computational grid with a large radial distance relative to the aperture radius to delay the reflections from the boundary. To decrease the size of the computational grid, an absorbing boundary layer derived from the power law wave equation. Simulations of linear pressure fields generated by a spherically focused transducer are evaluated for a short pulse. Numerical results for linear KZK simulations with and without the absorbing boundary layer are compared to the numerical results with a sufficiently large radial distance. Simulation results with and without the PML are also evaluated, where these show that the absorbing layer effectively attenuates the wavefronts that reach the boundary of the computational grid.
机译:在人体组织中传播的超声波的衰减遵循相对于频率的幂律,该幂律由几个不同的分数阶偏微分方程建模。这些用于医学超声的幂律衰减的模型是使用分数演算开发的,其中每一个都包含一个或多个时间分数或空间分数导数。为了证明因果分数阶和非因果分数阶偏微分方程解的异同,对分数波方程数值计算了时域格林函数。对于幂律定律方程,Szabo波动方程和Caputo波动方程这三个时间分形波动方程,对于水的幂定律指数为y = 2,肝脏的幂定律指数为y的水,评估了这些格林函数。 y = 1.139,并且幂律指数为y = 1.5的乳房。仿真结果表明,数值计算的时域响应的非因果特征仅在极端近场区域内才明显,并且因果格林函数和非因果格林函数收敛于远场中的相同时域波形。当非因果时域格林函数与有限带宽信号进行卷积时,时域中的非因果行为被消除,这表明非因果时域行为仅在非常有限的一组情况下出现,并且这些时间分数模型对于大多数数值计算而言,它们是同等有效的。对于空间分形波动方程的计算,时域格林函数是针对两个空间分数模型(即Chen-Holm和Treeby-Cox波动方程)进行数值计算的。计算了这些结果在乳房和肝脏中的数值。结果表明,这两个空间分数波动方程在各处都是因果关系的。远离原点,色散Treeby-Cox空间分数波动方程的时域Green函数与为相应的时分数波动方程计算的时域Green函数非常相似,但时域Green函数的时域Green函数为非分散的Chen-Holm空间分数波方程有很大的不同。为了突出两者之间的相似点和差异,比较了时域格林函数,并在不同距离处评估了它们的乳房和肝脏参数。当时域格林函数与有限带宽信号进行卷积时,这两个空间分数波方程的相速度差会导致时间延迟,这在远场尤为明显。使用Khokhlov-Zabolotskaya-Kuznetsov(KZK)方程实现用于数值计算的完全匹配层(PML)。以前,KZK模拟需要相对于孔径半径具有较大径向距离的计算网格,以延迟来自边界的反射。为了减小计算网格的大小,从幂律波动方程派生了吸收边界层。对短脉冲评估了球形聚焦换能器产生的线性压力场的仿真。将具有和不具有吸收边界层的线性KZK模拟的数值结果与具有足够大的径向距离的数值结果进行比较。还评估了使用和不使用PML的仿真结果,这些结果表明吸收层有效地衰减了到达计算网格边界的波前。

著录项

  • 作者

    Zhao, Xiaofeng.;

  • 作者单位

    Michigan State University.;

  • 授予单位 Michigan State University.;
  • 学科 Electrical engineering.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 132 p.
  • 总页数 132
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号