首页> 外文学位 >Resilient Submodular Maximization for Control and Sensing
【24h】

Resilient Submodular Maximization for Control and Sensing

机译:用于控制和传感的弹性亚模最大化

获取原文
获取原文并翻译 | 示例

摘要

Fundamental applications in control, sensing, and robotics, motivate the design of systems by selecting system elements, such as actuators or sensors, subject to constraints that require the elements not only to be a few in number, but also, to satisfy heterogeneity or interdependency constraints (called matroid constraints). For example, consider the scenarios: (1) (Control ) Actuator placement: In a power grid, how should we place a few generators both to guarantee its stabilization with minimal control effort, and to satisfy interdependency constraints where the power grid must be controllable from the generators? (2) (Sensing) Sensor placement: In medical brain-wearable devices, how should we place a few sensors to ensure smoothing estimation capabilities? (3) ( Robotics) Sensor scheduling: At a team of mobile robots, which few on-board sensors should we activate at each robot ---subject to heterogeneity constraints on the number of sensors that each robot can activate at each time--- so both to maximize the robots' battery life, and to ensure the robots' capability to complete a formation control task?;In the first part of this thesis we motivate the above design problems, and propose the first algorithms to address them. In particular, although traditional approaches to matroid-constrained maximization have met great success in machine learning and facility location, they are unable to meet the aforementioned problem of actuator placement. In addition, although traditional approaches to sensor selection enable Kalman filtering capabilities, they do not enable smoothing or formation control capabilities, as required in the above problems of sensor placement and scheduling. Therefore, in the first part of the thesis we provide the first algorithms, and prove they achieve the following characteristics: provable approximation performance : the algorithms guarantee a solution close to the optimal; minimal running time: the algorithms terminate with the same running time as state-of-the-art algorithms for matroid-constrained maximization; adaptiveness: where applicable, at each time step the algorithms select system elements based on both the history of selections. We achieve the above ends by taking advantage of a submodular structure of in all aforementioned problems ---submodularity is a diminishing property for set functions, parallel to convexity for continuous functions.;But in failure-prone and adversarial environments, sensors and actuators can fail; sensors and actuators can get attacked. Thence, the traditional design paradigms over matroid-constraints become insufficient, and in contrast, resilient designs against attacks or failures become important. However, no approximation algorithms are known for their solution; relevantly, the problem of resilient maximization over matroid constraints is NP-hard.;In the second part of this thesis we motivate the general problem of resilient maximization over matroid constraints, and propose the first algorithms to address it, to protect that way any design over matroid constraints, not only within the boundaries of control, sensing, and robotics, but also within machine learning, facility location, and matroid-constrained optimization in general. In particular, in the second part of this thesis we provide the first algorithms, and prove they achieve the following characteristics: resiliency: the algorithms are valid for any number of attacks or failures; adaptiveness: where applicable, at each time step the algorithms select system elements based on both the history of selections, and on the history of attacks or failures; provable approximation guarantees: the algorithms guarantee for any submodular or merely monotone function a solution close to the optimal; minimal running time: the algorithms terminate with the same running time as state-of-the-art algorithms for matroid-constrained maximization. We bound the performance of our algorithms by using notions of curvature for monotone (not necessarily submodular) set functions, which are established in the literature of submodular maximization.;In the third and final part of this thesis we apply our tools for resilient maximization in robotics, and in particular, to the problem of active information gathering with mobile robots. This problem calls for the motion-design of a team of mobile robots so to enable the effective information gathering about a process of interest, to support, e.g., critical missions such as hazardous environmental monitoring, and search and rescue. Therefore, in the third part of this thesis we aim to protect such multi-robot information gathering tasks against attacks or failures that can result to the withdrawal of robots from the task. We conduct both numerical and hardware experiments in multi-robot multi-target tracking scenarios, and exemplify the benefits, as well as, the performance of our approach.
机译:控制,感测和机器人技术的基础应用通过选择系统元件(例如致动器或传感器)来激励系统的设计,这些系统元件受到不仅要求元件数量少而且还必须满足异构性或相互依赖性的约束条件约束(称为拟阵约束)。例如,请考虑以下情形:(1)(控制)执行器的放置:在电网中,我们应如何放置一些发电机,以最小的控制力保证其稳定,并满足电网必须可控的相互依赖性约束从发电机? (2)(感应)传感器放置:在可穿戴式医疗大脑设备中,我们应如何放置一些传感器以确保平滑估计能力? (3)(机器人技术)传感器调度:在一个移动机器人团队中,我们每个机器人应激活的车载传感器很少-受每个机器人每次可激活的传感器数量的异质性限制- -这样既可以最大化机器人的电池寿命,又可以确保机器人完成编队控制任务的能力?;在本文的第一部分中,我们激发了上述设计问题,并提出了解决这些问题的第一个算法。尤其是,尽管传统的拟阵约束最大方法在机器学习和设备定位方面取得了巨大成功,但它们无法满足执行器放置的上述问题。另外,尽管传统的传感器选择方法启用了卡尔曼滤波功能,但它们没有启用平滑或形成控制功能,这是上述传感器放置和调度问题中所要求的。因此,在本文的第一部分中,我们提供了第一种算法,并证明了它们具有以下特征:可证明的近似性能:这些算法保证了接近最优的解;最小的运行时间:算法的终止时间与用于类拟阵约束最大化的最新算法的运行时间相同;适应性:在适用的情况下,算法在每个时间步都基于两个选择的历史记录来选择系统元素。我们通过利用所有上述问题的子模块结构来实现上述目的---子模块性是集合函数的递减特性,与连续函数的凸性并行;但是在容易失败和对抗的环境中,传感器和执行器可以失败;传感器和执行器可能会受到攻击。因此,传统的仿形约束设计范式变得不足,相反,抵御攻击或失败的弹性设计变得很重要。但是,没有近似算法可以解决这些问题。与此相关,拟阵约束上的弹性最大化问题是NP难的。;在本论文的第二部分,我们提出了拟阵约束上的弹性最大化的一般问题,并提出了第一个算法来解决,以这种方式保护任何设计不仅在控制,感测和机器人技术的范围内,而且在机器学习,设施位置和一般受类机器人约束的优化范围内,都受到类机器人约束的影响。特别是,在本文的第二部分中,我们提供了第一种算法,并证明了它们具有以下特征:弹性:这些算法对任何数量的攻击或故障均有效;适应性:在适用的情况下,算法在每个时间步均基于选择的历史记录以及攻击或故障的历史记录来选择系统元素;可证明的近似保证:算法为任何亚模函数或仅单调函数保证了接近最优的解决方案;最小的运行时间:算法的终止时间与用于类拟阵约束最大化的最新算法的运行时间相同。我们通过对单模(不一定是子模)集合函数使用曲率概念来约束算法的性能,这在子模最大化的文献中已经建立。在本论文的第三部分和最后一部分,我们将工具用于弹性最大化。机器人技术,尤其是移动机器人主动收集信息的问题。这个问题需要移动机器人团队的运动设计,以便能够收集有关感兴趣过程的有效信息,以支持例如危险环境监控以及搜索和救援等关键任务。因此,在本论文的第三部分中,我们旨在保护此类多机器人信息收集任务免遭可能导致机器人退出任务的攻击或故障。我们在多机器人多目标跟踪方案中进行了数值和硬件实验,并举例说明了该方法的好处以及性能。

著录项

  • 作者

    Tzoumas, Vasileios.;

  • 作者单位

    University of Pennsylvania.;

  • 授予单位 University of Pennsylvania.;
  • 学科 Electrical engineering.;Systems science.;Robotics.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 272 p.
  • 总页数 272
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号