首页> 外文学位 >Growth of Graphene on Different Substrates Using Different Growth Techniques.
【24h】

Growth of Graphene on Different Substrates Using Different Growth Techniques.

机译:使用不同的生长技术在不同的基底上生长石墨烯。

获取原文
获取原文并翻译 | 示例

摘要

Graphene is a promising new material with excellent electrical and thermal properties (Hemani 2011). Their unique planar hexagonal carbons--carbon structure, as well as the sp2 hybridization that is responsible for excellent charge transport properties determine its electrical properties. Electron mobility's exceeding 200,000 cm2V--1 s--1 have been measured. These excellent properties make single layer graphene a suitable material for high-performance devices. The fact that monolayer graphene has no band gap makes it difficult to be used as a material for field-effect transistors. Since monolayer graphene has, these restrictions are due to no band gap; having a bilayer graphene will solve this problem. According to(Abderrazak , Houyem and Bel Hady Hmid, Emna Selmane ) bilayer graphene exhibit a gap under the application of an applied external electric field (Bao 2012). Some of the obstacles faced when growing graphene are, the current growth methods, especially chemical vapor deposition (CVD) and epitaxial growth (SiC) need a transfer step to transfer the graphene onto a preferred substrate. According to previous researchers, using a transfer process degrades the electrical properties of the graphene layer (Ahmad Umair and Hassan Raza 2012). In this work, an alternate unconventional growth method using radio frequency chemical vapor deposition shows that it is possible to obtain graphene directly onto the insulator (SiO2) or the Si substrate. Graphene growth was attempted on various substrates using radio frequency chemical vapor deposition and the conventional chemical vapor deposition. The growth of graphene was successful on Nickle evaporated on SiO2,Copper foil, Palladium and Platinum evaporated on SiO2. The results were confirmed by the Raman Spectroscopy test.
机译:石墨烯是一种有前途的新材料,具有出色的电学和热学性能(Hemani 2011)。它们独特的平面六方碳-碳结构以及负责出色的电荷传输性能的sp2杂化决定了其电性能。已测量出超过200,000 cm2V--1 s--1的电子迁移率。这些优异的性能使单层石墨烯成为高性能器件的合适材料。单层石墨烯没有带隙的事实使得难以用作场效应晶体管的材料。由于具有单层石墨烯,因此这些限制是由于没有带隙引起的;使用双层石墨烯将解决此问题。根据(Abderrazak,Houyem和Bel Hady Hmid,Emna Selmane)的研究,双层石墨烯在施加外电场的情况下会出现间隙(Bao 2012)。在生长石墨烯时面临的一些障碍是,当前的生长方法,特别是化学气相沉积(CVD)和外延生长(SiC),需要转移步骤才能将石墨烯转移到优选的基材上。根据以前的研究人员的研究,使用转移工艺会降低石墨烯层的电性能(Ahmad Umair和Hassan Raza 2012)。在这项工作中,使用射频化学气相沉积的另一种非常规生长方法表明,可以在绝缘体(SiO2)或Si基板上直接获得石墨烯。尝试使用射频化学气相沉积和常规化学气相沉积在各种基板上生长石墨烯。在SiO2上蒸发镍,铜箔,在SiO2上蒸发钯和铂后,石墨烯的生长成功。结果通过拉曼光谱测试证实。

著录项

  • 作者

    Musengua, Mpho.;

  • 作者单位

    Howard University.;

  • 授予单位 Howard University.;
  • 学科 Electrical engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 92 p.
  • 总页数 92
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号