首页> 外文学位 >Molecular Dynamics Simulations to Study the Effect of Fracturing on the Efficiency Of CH4--CO2 Replacement in Hydrates
【24h】

Molecular Dynamics Simulations to Study the Effect of Fracturing on the Efficiency Of CH4--CO2 Replacement in Hydrates

机译:分子动力学模拟研究压裂对水合物中CH4-CO2置换效率的影响

获取原文
获取原文并翻译 | 示例

摘要

Feasible techniques for long-term methane production from naturally occurring gas hydrates are being explored in both marine and permafrost geological formations around the world. Most of the deposits are found in low-permeability reservoirs and the economic and efficient exploitation of these is an important issue. One of the techniques gaining momentum in recent years is the replacement of CH4-hydrates with CO2-hydrates. Studies have been performed, at both laboratory and field based experimental and simulation scale, to evaluate the feasibility of the in situ mass transfer by injecting CO2 in gaseous, liquid, supercritical and emulsion form. Although thermodynamically feasible, these processes are limited by reaction kinetics and diffusive transport mechanisms. Increasing the permeability and the available surface area can lead to increased heat, mass and pressure transfer across the reservoir. Fracturing technology has been perfected over the years to provide a solution in such low-permeability reservoirs for surface-dependent processes. This work attempts to understand the effects of fracturing technology on the efficiency of this CH4-CO 2 replacement process. Simulations are performed at the molecular scale to understand the effect of temperature, initial CO2 concentration and initial surface area on the amount of CH4 hydrates dissociated.;A fully saturated methane hydrate lattice is subjected to a uniaxial tensile loading to validate the elastic mechanical properties and create a fracture opening for CO2 injection. The Isothermal Young's modulus was found to be very close to literature values and equal to 8.25 GPa at 270 K. Liquid CO2 molecules were then injected into an artificial fracture cavity, of known surface area, and the system was equilibrated to reach conditions suitable for CH4 hydrate dissociation and CO 2 hydrate formation. The author finds that as the simulation progresses, CH4 molecules are released into the cavity and the presence of CO2 molecules aids in the rapid formation of CH4 nanobubbles. These nanobubbles formed in the vicinity of the hydrate/liquid interface and not near the mouth of the cavity. The CO2 molecules were observed to diffuse into the liquid region and were not a part of the nanobubble. Dissolved gas and water molecules are found to accumulate near the mouth of the cavity in all cases, potentially leading to secondary hydrate formation at longer time scales.;Temperatures studied in this work did not have a significant effect on the replacement process. Simulations with varying initial CO2 concentration, keeping the fracture surface area constant, show that the number of methane molecules released is directly proportional to the initial CO2 concentration. It was also seen that the number of methane molecules released increases with the increase in the initial surface area available for mass transfer. On comparing the positive effect of the two parameters, the initial CO2 concentration proved to have greater positive impact on the number of methane molecules released as compared to the surface area. These results provide some insight into the mechanism of combining the two recovery techniques. They lay the groundwork for further work exploring the use of fracturing as a primary kick-off technique prior to CO2 injection for methane production from hydrates.
机译:在世界各地的海洋和多年冻土地质构造中,都在探索从天然存在的天然气水合物中长期生产甲烷的可行技术。大多数沉积物发现于低渗透油藏中,对其进行经济有效的开采是一个重要的问题。近年来获得发展的技术之一是用CO2-水合物代替CH4-水合物。已经在实验室和基于现场的实验和模拟规模上进行了研究,以通过以气态,液态,超临界和乳液形式注入CO2来评估原位传质的可行性。尽管在热力学上可行,但这些过程受到反应动力学和扩散传输机制的限制。渗透率和可用表面积的增加会导致储层中的热量,质量和压力传递增加。多年来,压裂技术已经完善,可以为此类依赖地面的工艺的低渗透油藏提供解决方案。这项工作试图了解压裂技术对这种CH4-CO 2置换过程效率的影响。在分子尺度上进行模拟以了解温度,初始CO2浓度和初始表面积对离解CH4水合物数量的影响。对完全饱和的甲烷水合物晶格进行单轴拉伸载荷以验证其弹性力学性能和为注入二氧化碳创造裂缝。发现等温杨氏模量非常接近文献值,在270 K时等于8.25 GPa。然后将液态CO2分子注入已知表面积的人工裂缝腔中,并使系统平衡以达到适合CH4的条件水合物离解和CO 2水合物形成。作者发现,随着模拟的进行,CH4分子被释放到空腔中,并且CO2分子的存在有助于CH4纳米气泡的快速形成。这些纳米气泡在水合物/液体界面附近而不是在腔口附近形成。观察到CO2分子扩散到液体区域,而不是纳米气泡的一部分。在所有情况下,都发现溶解的气体和水分子积聚在腔口附近,并可能在较长的时间尺度上导致二次水合物的形成。;在这项工作中研究的温度对置换过程没有显着影响。通过改变初始CO2浓度并保持裂缝表面积不变的模拟表明,释放出的甲烷分子数量与初始CO2浓度成正比。还可以看出,释放出的甲烷分子的数量随可用于传质的初始表面积的增加而增加。在比较这两个参数的积极影响时,与表面积相比,初始CO2浓度对释放的甲烷分子数量具有更大的积极影响。这些结果为结合两种回收技术的机理提供了一些见识。他们为进一步的研究打下了基础,这些工作探索了在将CO2注入之前用于从水合物生产甲烷的过程中,将压裂作为主要的开钻技术。

著录项

  • 作者

    Akheramka, Aditaya O.;

  • 作者单位

    University of Alaska Fairbanks.;

  • 授予单位 University of Alaska Fairbanks.;
  • 学科 Petroleum engineering.;Chemical engineering.;Energy.
  • 学位 M.S.
  • 年度 2018
  • 页码 134 p.
  • 总页数 134
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号