首页> 外文学位 >Simulation of Mid-Infrared Transmission Losses in Semiconductor-Core Optical Fibers.
【24h】

Simulation of Mid-Infrared Transmission Losses in Semiconductor-Core Optical Fibers.

机译:半导体芯光纤中红外传输损耗的仿真。

获取原文
获取原文并翻译 | 示例

摘要

The mid-infrared (IR) region of electromagnetic spectrum (2--15 microm) has numerous applications, ranging from chemical & thermal sensing to medical surgery. Current IR fiber technology, that uses chalcogenides, halides, among other materials, has its shortcomings. Semiconductor materials like germanium (Ge) and silicon (Si) have exceptional properties like tunable band-gap, high refractive index & low extinction coefficients and low Rayleigh scattering due to highly crystalline structure, making them excellent materials for IR optical fibers and other IR based devices. Optical fibers fabricated with Ge-Si alloy cores are still in their nascent phase and this research aims to provide a detailed theoretical study of transmission losses in such fibers.;Using Electromagnetic Finite Element Analysis (FEA) through COMSOL software, IR transmission through semiconductor core optical fibers was successfully modeled and simulated. The study focused on identifying the optimal geometry and operating wavelengths for pure semiconductor (Ge and Si) core fibers, Ge-Si alloy Step Index (SI) core fibers, as well as Graded Refractive Index (GRIN) Ge-Si alloy core fibers. Using optical waveguide theory, and available wavelength dependent attenuation values in the literature, properties like transmission losses and EM modal parameters were simulated for Ge core fibers and Ge core covered with ZnSe (thin ring) fibers. These predictions were in excellent agreement with published literature values, thereby validating the simulation methodology.;This methodology was then applied to Ge-Si alloy core fibers with SI and GRIN structures, with properties such as refractive index and extinction coefficients calculated using techniques like the Kramers-Kronig relationships. Fiber properties such as attenuation, electric & magnetic fields, optical power flow and other important parameters, were investigated as function of wavelength of the IR light, fiber geometry, and composition profile of the Ge-Si alloy fiber core, to assess the optimum fiber design for each type of core. The simulation results showed that GRIN Ge-Si alloy fibers were the best solution, due to their low losses, low dispersion of EM signals and better optical power confinement over a wide spectral range.
机译:电磁光谱(2--15微米)的中红外(IR)区域具有广泛的应用,范围从化学和热感测到医疗手术。当前的IR纤维技术,其中使用硫族化物,卤化物以及其他材料,具有其缺点。诸如锗(Ge)和硅(Si)之类的半导体材料具有出色的性能,如可调带隙,高折射率和低消光系数以及由于高度结晶的结构而具有的低瑞利散射,使其成为红外光纤和其他基于红外的优异材料设备。用Ge-Si合金芯制造的光纤仍处于起步阶段,本研究旨在为此类光纤的传输损耗提供详细的理论研究。;通过COMSOL软件使用电磁有限元分析(FEA),通过半导体芯进行IR传输光纤已成功建模和仿真。该研究的重点是确定纯半导体(Ge和Si)芯纤维,Ge-Si合金阶跃折射率(SI)芯纤维以及渐变折射率(GRIN)Ge-Si合金芯纤维的最佳几何形状和工作波长。使用光波导理论和文献中可用的波长相关衰减值,对Ge芯光纤和ZnSe(薄环)光纤覆盖的Ge芯的传输损耗和EM模态参数等特性进行了仿真。这些预测与已发表的文献资料非常吻合,从而验证了模拟方法学;然后将该方法应用于具有SI和GRIN结构的Ge-Si合金芯纤维,并使用诸如此类的技术计算出诸如折射率和消光系数的特性。 Kramers-Kronig关系。研究了诸如衰减,电场和磁场,光功率流和其他重要参数等纤维特性,作为红外光波长,纤维几何形状以及Ge-Si合金纤维芯的成分分布的函数,以评估最佳纤维针对每种类型的磁芯进行设计。仿真结果表明,GRIN Ge-Si合金光纤具有较低的损耗,较低的EM信号色散以及在较宽的光谱范围内具有更好的光功率限制,因此是最佳解决方案。

著录项

  • 作者

    Gautam, Yashanshu.;

  • 作者单位

    Boston University.;

  • 授予单位 Boston University.;
  • 学科 Materials science.;Optics.
  • 学位 M.S.
  • 年度 2018
  • 页码 111 p.
  • 总页数 111
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号