首页> 外文学位 >Seismic reflection imaging of thermohaline fine structures in the Southeast Caribbean Sea: Implications for short-term ocean circulation dynamics.
【24h】

Seismic reflection imaging of thermohaline fine structures in the Southeast Caribbean Sea: Implications for short-term ocean circulation dynamics.

机译:东南加勒比海热盐细微结构的地震反射成像:对短期海洋环流动力学的影响。

获取原文
获取原文并翻译 | 示例

摘要

The ocean conveyor belt is a dynamic system of currents that distributes heat and matter, and is partially responsible for regulating the Earth's climate. Currents circumnavigating the world's oceans are in motion in part through thermohaline circulation (THC), a mixing process driven by density gradients. Unlike wind-driven surface currents, which affect the uppermost ~100 m of the water column and behave fairly intuitively, the underlying THC has historically been more difficult to characterize due to the complex interaction between thermohaline and surface forces that drive it. In fact, the processes that regulate a steady-state THC require both the density gradients and the downward penetration of heat ensured by turbulent mixing in the ocean's interior, which is in turn driven by tidal motions and by the winds. Unfortunately oceanographic measurements cannot distinguish between thermohaline and wind-driven currents, making the THC difficult to measure. The seismic reflection method has proven to be effective at imaging oceanic thermohaline fine structures as variations in density and acoustic velocity. This methodology, known as seismic oceanography, is used here to map the fine structure of the Caribbean Sea using legacy seismic reflection data, and to investigate how thermohaline structures evolve over time. The Caribbean Sea is an integral part of the ocean conveyor belt and a major supplier of nutrient-rich waters to the local ecosystem year round through a system of coastal upwelling. Mapping the boundaries between upwelling fronts and surrounding waters improves our understanding of the mixing processes involved in ocean circulations and helps identify the zones of the highest biological productivity in this region.;In this study I use two ~387 km-long N-S transects that extend from the northern coast of Venezuela into the Venezuelan Basin. Seismic data were acquired twice over the timespan of four days for multichannel seismic (MCS) and wide-angle refraction crustal imaging purposes (MCS and OBS profile, respectively), therefore allowing for a coincident imaging of the thermohaline structure of the Caribbean Sea along the northern coast of Venezuela. Because of the timing and geometry of acquisition, this dataset offers the additional opportunity to perform time-lapse analysis on the oceanic currents internal structure over a maximum period of four-days. Careful data processing reveals remarkably clear reflectors in the shot gathers to a depth of ~1000 m. Coincident thermoprofiles from XBT/XCTD (expendable bathythermograph) casts show a near-steady-state temperature gradient below roughly 1000 m depth, indicating a correlation between the end of the thermocline and the fading of the reflectivity. Along the seismic profile, the reflectivity can be traced throughout the entire ~387 km of MCS and OBS lines, and is characterized by several high amplitude reflectors continuous over distances of ~180 km. Structures observed along the processed, time-migrated and depth-converted profiles are interpreted as evidence of mesoscale downwelling in the form of two cold water filaments traveling northwest from upwelling foci along the Venezuelan coastline through the Leeward Antilles islands and toward the Venezuelan Basin. Subducting water masses sink to the base of the thermocline in a sigmoidal pattern over ~180 km. The initial subduction is likely the result of converging water masses with different buoyancies. Time-lapse analysis indicates that the overall reflective pattern in the Venezuelan Basin remains remarkably stable within the thermocline over ~2-4 days; the individual boundaries of the cold water filaments have apparent vertical velocities of 0-35 m/day, suggesting that filaments have a high degree of spatial and temporal variability.
机译:海洋输送带是一个动态的水流动力系统,可以分配热量和物质,并部分负责调节地球的气候。环游世界海洋的潮流部分地通过热盐环流(THC)在运动,这是由密度梯度驱动的混合过程。与风能驱动的地表水不同,风能影响水柱的最上端〜100 m并具有相当直观的表现,由于热盐碱和驱动它的地表力之间复杂的相互作用,因此历史上难以描述下层THC。实际上,调节稳态THC的过程既需要密度梯度,又需要通过海洋内部湍流混合来确保热量的向下渗透,而湍流混合又是由潮汐运动和风驱动的。不幸的是,海洋学测量无法区分热盐流和风力流,这使得THC难以测量。事实证明,地震反射方法可以有效地成像海洋温盐细微结构的密度和声速变化。这种方法被称为地震海洋学,在这里用于使用遗留地震反射数据绘制加勒比海的精细结构图,并研究热盐结构如何随时间演化。加勒比海是海洋输送带的组成部分,并且是通过沿海上升流系统全年为当地生态系统提供营养丰富的水的主要供应商。绘制上升流前沿与周围水域之间的边界,可以增进我们对海洋环流所涉及的混合过程的理解,并有助于确定该地区生物生产力最高的区域。在本研究中,我使用了两个〜387 km长的NS样点从委内瑞拉北部海岸到委内瑞拉盆地。为了进行多通道地震(MCS)和广角折射地壳成像(分别为MCS和OBS剖面),在四天的时间范围内两次采集了地震数据,因此可以对加勒比海沿海的热盐结构进行重合成像。委内瑞拉北部海岸。由于采集的时间和几何形状,该数据集提供了额外的机会,可以在最长四天的时间内对洋流内部结构进行时移分析。仔细的数据处理揭示了镜头集合中至约1000 m深度的反射器非常清晰。来自XBT / XCTD(可膨胀水热成像仪)铸件的重合热剖面显示,在大约1000 m深度以下,接近稳态温度梯度,表明热跃层的末端与反射率的衰减之间存在相关性。沿着地震剖面,可以在MCS和OBS线的整个〜387 km范围内追踪反射率,其特征是几个高振幅的反射器在〜180 km的距离上连续。沿加工的,经过时间迁移和深度转换的剖面观察到的结构被解释为中尺度下涌的证据,表现为两条冷水细丝的形式,从上涌震源沿着委内瑞拉海岸线向西北移动,经过Leeward Antilles群岛并到达委内瑞拉盆地,向西北方向移动。俯冲的水团在约180 km处以S形下降到温跃层的底部。最初的俯冲很可能是不同质量的水团聚的结果。时移分析表明,委内瑞拉盆地的整体反射模式在2-4天之内在温跃层内保持非常稳定。冷水细丝的各个边界具有0-35 m / day的表观垂直速度,这表明细丝具有高度的时空变化性。

著录项

  • 作者

    Christianson, Ryan.;

  • 作者单位

    Southern Methodist University.;

  • 授予单位 Southern Methodist University.;
  • 学科 Geophysics.
  • 学位 M.S.
  • 年度 2015
  • 页码 98 p.
  • 总页数 98
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号