首页> 外文学位 >Data Mining Application to Power Grid PMU Data
【24h】

Data Mining Application to Power Grid PMU Data

机译:数据挖掘在电网PMU数据中的应用

获取原文
获取原文并翻译 | 示例

摘要

The reliability of the power system is of vital importance to daily life. Power outages, either small or big, cause economic loss and inconvenience. The effort to better understand the behaviors of the power grid has a long history. Several years ago, engineers and researchers started to modernize the national power grid in the United States by moving it into the next generation called SmartGrid. The massive installation of Phasor Measurement Units (PMUs) is the highlight of this movement. Compared to the sensors from the last generation in the power grid, PMUs can produce more accurate and rapid information regarding the state of the grid.;Data from PMUs are usually 30 samples to 60 samples per second and contain both voltage magnitude and angle measurements. The data is high-dimensional with hundreds or thousands of signals and is highly correlated across signals. One advantage of PMU data is that it is time aligned throught GPS. The biggest challenge in the use of PMU data is the massive amount of data, which causes difficulties for storage, pre-processing, analysis, and visualization. A whole year of PMU data can be several terabytes depending on the number of signals in the data. In fact, the information provided by PMUs is now so big that it is difficult for scientists to handle or easily comprehend.;Meanwhile, many exciting accomplishments have been seen in various fields using data mining. Data mining has become increasingly important with the appearance of various kinds of big data. The power grid data analytics is a good example of such a big data problem. There has been an increase of data mining applications in the power systems research field in recent years, partly due to advancements in data mining. There has been much work on this topic in the last 10 years.;This research work, which has been done at the University of Wyoming and Pacific Northwest National Laboratory, consists of data analytics on simulated PMU data from the MinniWECC system and real PMU data from the Western Electricity Coordinating Council (WECC) system for the 2008 to 2009 and 2016 to 2017 operating seasons. This work contains measurement-based power system offline studies involving event detection, event classification, abnormal operating conditions, and potential online applications.;The simulated study discusses the implementation and performance of various machine learning algorithms for classifying power system event types and event locations. A simple feature extraction method is applied. The contribution of this study is to demonstrate how data mining techniques can be used to incorporate information from PMU data to assess the system condition.;Moreover, data mining techniques are applied to historical data consisting of PMU measurements from WECC from June 2008 to June 2009. The main objective is to classify abnormal and normal power grid modal behavior of the WECC interconnect at the daily scale. The data is transformed to the frequency domain to represent operating conditions of each day. A closer investigation of misclassified days is also conducted to look at abnormal system behaviors at the hourly scale. The research contribution of this study is the application of data mining techniques to power grid data in the frequency domain to identify various power system events, especially large scale events both in size and in duration.;The third part of this dissertation extends the findings in the simulated study and applies updated methodologies to PMU data from October 2016 to May 2017. This work involves training machine learning algorithms to detect and classify power system events in the time domain. Different machine learning algorithms are applied and a new algorithm is developed to enhance the final algorithm. The results show that the proposed algorithm can successfully detect and classify power system events at high accuracy in under one second. This research demonstrates the potential for an on-line application of achieving near real-time power system situational awareness.
机译:电力系统的可靠性对日常生活至关重要。大小电力中断都会造成经济损失和不便。更好地了解电网行为的努力由来已久。几年前,工程师和研究人员开始通过将其移入下一代称为SmartGrid的国家电网来实现现代化。相量测量单元(PMU)的大量安装是这一运动的重点。与电网中最新一代的传感器相比,PMU可以生成有关电网状态的更准确,更快速的信息。PMU的数据通常为每秒30个样本到60个样本,并且包含电压幅度和角度测量值。数据是具有数百或数千个信号的高维数据,并且在信号之间高度相关。 PMU数据的优势之一是它可以通过GPS进行时间校准。使用PMU数据的最大挑战是海量数据,这给存储,预处理,分析和可视化带来了困难。一年中的PMU数据可能会达到数TB,具体取决于数据中的信号数量。实际上,PMU提供的信息非常庞大,以至于科学家难以处理或难以理解。同时,使用数据挖掘在各个领域都看到了许多激动人心的成就。随着各种大数据的出现,数据挖掘变得越来越重要。电网数据分析就是此类大数据问题的一个很好的例子。近年来,数据挖掘在电力系统研究领域的应用有所增加,部分原因是数据挖掘的进步。在过去的十年中,有关该主题的工作很多。;这项研究工作在怀俄明大学和西北太平洋国家实验室进行,包括对来自MinniWECC系统的模拟PMU数据和实际PMU数据的数据分析。来自西方电力协调理事会(WECC)系统的2008至2009年和2016至2017年运营季节。这项工作包含基于测量的电力系统离线研究,涉及事件检测,事件分类,异常运行状况和潜在的在线应用程序。仿真研究讨论了用于对电力系统事件类型和事件位置进行分类的各种机器学习算法的实现和性能。应用了一种简单的特征提取方法。这项研究的目的是证明如何使用数据挖掘技术来合并PMU数据中的信息以评估系统状况。此外,数据挖掘技术还应用于包括WECC于2008年6月至2009年6月的PMU测量组成的历史数据主要目标是按日尺度对WECC互连的异常和正常电网模式行为进行分类。数据被转换到频域以表示每天的运行状况。还对错误分类的日期进行了更深入的调查,以小时为单位查看系统的异常行为。这项研究的研究贡献是数据挖掘技术在频域中用于电网数据的识别,以识别各种电力系统事件,特别是规模和持续时间方面的大型事件。该模拟研究将更新的方法论应用于2016年10月至2017年5月的PMU数据。这项工作涉及训练机器学习算法,以在时域中检测和分类电力系统事件。应用了不同的机器学习算法,并开发了一种新算法来增强最终算法。结果表明,该算法可以在一秒内成功地对电力系统事件进行高精度的分类检测。这项研究证明了实现近实时电力系统态势感知的在线应用的潜力。

著录项

  • 作者

    Yin, Tianzhixi.;

  • 作者单位

    University of Wyoming.;

  • 授予单位 University of Wyoming.;
  • 学科 Statistics.;Electrical engineering.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 107 p.
  • 总页数 107
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号