首页> 外文学位 >Controlling Enzyme Expression Dynamics to Improve Production from Engineered Biosynthetic Pathways
【24h】

Controlling Enzyme Expression Dynamics to Improve Production from Engineered Biosynthetic Pathways

机译:控制酶的表达动力学以提高工程化生物合成途径的产量

获取原文
获取原文并翻译 | 示例

摘要

Metabolic engineering promises to reduce our reliance on non-renewable chemical synthesis methods by harnessing microbial metabolisms to convert simple renewable resources, such as sugars, into useful chemicals, such as biofuels. Most metabolic engineering efforts require expressing heterologous enzymes in a microbial host, such as E. coli. Both the process of producing enzymes and the chemical metabolites that are produced can have deleterious impacts on host fitness, however. Here we detail efforts to use experimental and computational methods to better understand how to mitigate the deleterious impact of a metabolic pathway on its host. Firstly, we sought to computationally predict how metabolic pathway titers could be improved, and product toxicity reduced, by implementing genetic feedback networks that can sense pathway metabolite concentrations in a cell and respond by up- or down-regulating enzyme levels. To this end, we developed a computational methodology for modeling and simulating large sets of genetic feedback networks acting on a metabolic pathway that produces 4-aminocinnamic acid, or 4-ACA. Our analysis revealed genetic feedback network architectures and implementations that promise to improve pathway titers. Secondly, we experimentally analyzed the burden imposed by expressing a Phenylalanine Ammonia Lyase enzyme, PAL2 from Arabidopsis thaliana, which converts 4-aminophenylalanine (4-AF) to 4-ACA in Escherichia coli cells. We uncovered how the timing and level of induction of a PAL2-superfolder GFP fusion (PAL2-sfGFP) influences cell growth, expression of PAL2-sfGFP, and in vivo cellular catalysis of 4-AF to 4-ACA conversion. We then identified stationary phase promoters that can be used to autonomously express high levels of PAL2-sfGFP, increase conversion, and reduce deleterious impacts. Lastly, we produced 4-AF from glucose in E. coli using a three-enzyme operon, PapABC, from Pseudomonas fluorescens, achieving titers of around 100 mg/L, forming the basis for a pathway to produce 4-ACA. Together, this work serves to improve our understanding of how to mitigate the deleterious impacts of a metabolic pathway on its host by using computational model analysis and by controlling in vivo enzyme expression dynamics.
机译:代谢工程有望通过利用微生物代谢将简单的可再生资源(例如糖)转化为有用的化学物质(例如生物燃料),来减少对不可再生化学合成方法的依赖。大多数代谢工程的工作都要求在微生物宿主(例如大肠杆菌)中表达异源酶。但是,产生酶的过程和产生的化学代谢物都可能对宿主的健康产生有害影响。在这里,我们详细介绍了使用实验和计算方法来更好地了解如何减轻代谢途径对其宿主的有害影响的努力。首先,我们试图通过实施遗传反馈网络来计算预测如何改善代谢途径的滴度并降低产品毒性,该遗传反馈网络可以检测细胞中途径代谢物的浓度并通过上调或下调酶水平做出反应。为此,我们开发了一种计算方法,用于建模和模拟作用于产生4-氨基肉桂酸或4-ACA的代谢途径的大量遗传反馈网络。我们的分析揭示了遗传反馈网络架构和实现,有望改善途径效价。其次,我们通过实验分析了表达拟南芥中苯丙氨酸氨分解酶PAL2的负担,该酶在大肠杆菌细胞中将4-氨基苯丙氨酸(4-AF)转化为4-ACA。我们发现了PAL2-superfolder GFP融合(PAL2-sfGFP)的诱导时间和诱导水平如何影响细胞生长,PAL2-sfGFP的表达以及4-AF到4-ACA转化的体内细胞催化作用。然后,我们确定了可以用于自主表达高水平PAL2-sfGFP,增加转化率并减少有害影响的固定相启动子。最后,我们使用来自荧光假单胞菌的三酶操纵子PapABC在大肠杆菌中从葡萄糖中产生了4-AF,达到的滴度约为100 mg / L,构成了产生4-ACA途径的基础。在一起,这项工作有助于提高我们对如何通过使用计算模型分析和控制体内酶表达动力学来减轻代谢途径对其宿主的有害影响的理解。

著录项

  • 作者

    Stevens, Jason Thomas.;

  • 作者单位

    University of Washington.;

  • 授予单位 University of Washington.;
  • 学科 Bioengineering.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 162 p.
  • 总页数 162
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号