首页> 外文学位 >Coevolution of ribosomes and the translational apparatus: The structure and function of eukaryotic ribosomal protein uS7 from yeast, Saccharomyces cerevisiae.
【24h】

Coevolution of ribosomes and the translational apparatus: The structure and function of eukaryotic ribosomal protein uS7 from yeast, Saccharomyces cerevisiae.

机译:核糖体和翻译设备的共同进化:酵母,酿酒酵母的真核核糖体蛋白uS7的结构和功能。

获取原文
获取原文并翻译 | 示例

摘要

High-resolution structures of yeast ribosomes revealed that eukaryotic and bacterial ribosomes share a common ribonucleoprotein core with majority of the changes (addition of rRNA expansion segments and proteins) occurring on the outer shell of the ribosome. The 80S yeast ribosome contains 79 proteins, of which 46 are eukaryote-specific and 34 proteins (15 and 19 in the small and large subunit respectively) are universally conserved. Despite general similarity in sequence and structure, many conserved ribosomal proteins have evolved eukaryote-specific extensions, whose functional significance is largely unknown and/or just beginning to emerge. It has been hypothesized that eukaryote-specific extensions of the conserved ribosomal proteins have evolved to accommodate eukaryote-specific features of the eukaryotic translational apparatus. Yeast, uS7 protein (known as rpS5 in yeast) from the small (40S) ribosomal subunit has evolved an N-terminal extension of ∼60 amino acid residues in length. The eukaryote-specific N-terminal extension of rpS5 also forms contacts with N-terminal extension of uS9 (known as rpS16 in yeast).;To understand the evolutionary complexity of the eukaryotic (yeast) ribosome and the function of yeast ribosomal protein rpS5, we have obtained and characterized yeast strains in which the wild-type yeast rpS5 was replaced by its truncated (from the N-terminal end) and/or mutant variants. Mutations of rpS5 led to the disruption of the eukaryotic-specific rpS5-rpS16 interaction and impair translation initiation, cell growth and induction of GCN4 mRNA translation in a manner suggesting incomplete assembly of 48S preinitiation complexes (PICs) at upstream AUG codons in GCN4 mRNA. We have hypothesized that rpS5-rpS16 interaction modulates the correct placement of the eIF2•GTP•Met-tRNAiMet ternary complex (TC) in the P-site of the 40S ribosomal subunit and eIF5-stimulated GTP-hydrolysis/Pi release, in a manner involving an altered location of the rpS16 C-terminal tail in the 40S decoding center. The rpS5-rpS16 interaction was also suggested to influence the placement of eIF1, TC and eIF5 following start codon recognition.;Our study provided the first experimental evidence supporting the functional significance of eukaryote-specific extensions and protein-protein interactions within the ribosome that are absent in prokaryotes but represent a defining feature of eukaryotic (yeast) ribosome.
机译:酵母核糖体的高分辨率结构显示,真核和细菌核糖体共享一个共同的核糖核蛋白核心,并且大部分变化(添加了rRNA扩增片段和蛋白质)都发生在核糖体的外壳上。 80S酵母核糖体包含79种蛋白质,其中46种是真核生物特异的,34种蛋白质(分别在小亚基和大亚基中分别为15和19个)是保守的。尽管在序列和结构上普遍相似,但是许多保守的核糖体蛋白已经进化出了真核生物特异性延伸,其功能意义在很大程度上是未知的和/或刚刚开始出现。已经假设保守核糖体蛋白的真核生物特异性延伸已经进化以适应真核翻译设备的真核生物特异性特征。酵母中,来自小的(40S)核糖体亚基的uS7蛋白(在酵母中称为rpS5)已经进化出长度约为60个氨基酸残基的N端延伸。 rpS5的真核生物特异性N端延伸也与uS9的N端延伸形成接触(在酵母中称为rpS16)。要了解真核(酵母)核糖体的进化复杂性和酵母核糖体蛋白rpS5的功能,我们已经获得并表征了酵母菌株,其中野生型酵母rpS5被其截短的(从N末端开始)和/或突变体替代。 rpS5突变导致真核生物特异性rpS5-rpS16相互作用中断,并损害翻译起始,细胞生长和GCN4 mRNA翻译诱导,从而提示48S预起始复合物(PIC)在GCN4 mRNA的上游AUG密码子处组装不完全。我们假设rpS5-rpS16相互作用以某种方式调节eIF2•GTP•Met-tRNAiMet三元复合物(TC)在40S核糖体亚基的P位和eIF5刺激的GTP水解/ Pi释放的正确位置。涉及rpS16 C端尾部在40S解码中心中的位置更改。还建议rpS5-rpS16相互作用会影响起始密码子识别后eIF1,TC和eIF5的位置。我们的研究提供了第一个实验证据,证明了真核生物特异性延伸和核糖体中蛋白质-蛋白质相互作用的功能重要性。原核生物中不存在,但代表了真核(酵母)核糖体的定义特征。

著录项

  • 作者

    Ghosh, Arnab.;

  • 作者单位

    Cleveland State University.;

  • 授予单位 Cleveland State University.;
  • 学科 Microbiology.;Molecular biology.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 149 p.
  • 总页数 149
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号