首页> 外文学位 >The effect of forest fragmentation on the biodiversity, phylogenetic diversity and phylogenetic community structure of seedling regeneration in the Central Amazon: Area effects and temporal dynamics.
【24h】

The effect of forest fragmentation on the biodiversity, phylogenetic diversity and phylogenetic community structure of seedling regeneration in the Central Amazon: Area effects and temporal dynamics.

机译:森林破碎化对中亚马逊地区幼苗再生的生物多样性,系统发育多样性和系统发育群落结构的影响:面积效应和时间动态。

获取原文
获取原文并翻译 | 示例

摘要

Amazonia is the largest and most biodiverse tropical forest, harboring approximately 25% of the earth's terrestrial species. Deforestation and consequent forest fragmentation have reduced intact Amazonian rainforest to 80% of its original extent, threatening this biodiversity. The negative effect of forest fragmentation on adult tree diversity in Amazonian forest is well documented, however it remains unknown how forest fragmentation affects the diversity and composition of forest regeneration. The first chapter of my dissertation research examines the impact of fragment area on the diversity of tree and shrub seedlings regenerating in an experimentally-fragmented landscape in the Central Amazon near Manaus, Brazil. To do this, I demarcated 104 subplots, each 10 m2 in area in the centers of fragments (1 ha, 10 ha, 100 ha) and in continuous forest controls, tagged and identified all seedlings encountered in these subplots, and determined the effect of fragment size on their density, species richness, Shannon diversity, Fisher's alpha diversity, phylogenetic diversity, phylogenetic community structure and species accumulation.;Results indicate a pronounced loss of tree seedling density (3x), species richness (2x), Shannon's diversity, Fisher's alpha diversity, and phylogenetic diversity in small fragments (≤10 ha) compared to continuous forest, while larger fragments (100 ha) had intermediate density and diversity. Accumulated species richness was highest in continuous forest and significantly declined with fragment area, indicating that regional diversity is also negatively affected by fragmentation. Phylogenetic community structure was also significantly altered in fragments: the terminal phylogenetic clustering characteristic of continuous forest was lost in forest fragments. Since patterns of regeneration in forest fragments today reflect their potential for diversity persistence in the future, these results suggest future forest assemblages in fragmented Amazonian forests will be impoverished on both local and landscape scales, especially in small fragments, and indicate that protection of large blocks of continuous primary forest should remain a conservation priority. In areas lacking continuous forest, my results showing a gradient in biodiversity retention potential from large to small fragments suggest that conservation efforts should prioritize the protection of large fragments, while small fragments could also play a significant conservation role at the landscape level as partial biodiversity reservoirs, in maintenance of landscape connectivity, and for facilitating the future restoration of tree and shrub diversity in adjacent pasture.;To understand the temporal dynamics of seedling regeneration, including the impact of a catastrophic climate-change induced drought in 2005, my second chapter examines changes in tree, shrub and liana seedling density and diversity over three time periods, and it documents recruitment and mortality dynamics driving changes in seedling density and diversity. I tagged all tree, shrub and liana seedlings located in 68 subplots, each 10 m2 in area between 9/22/2005 -- 8/9/2006 (2005 census) and revisited the plots between 10/5/2007 -- 7/21/2008 (2007 census) and again between 5/13/2009 -- 6/21/2009 (2009 census). I tested whether fragment size (1 ha, 10 ha, 100 ha, continuous forest), time period (2005, 2007, 2009) or their interaction significantly affect seedling density, species richness, Shannon diversity and Fisher's alpha diversity, and I also determined the effect of these factors on seedling recruitment, mortality, turnover and population change over two time periods (2005 -- 2007, 2007 -- 2009).;Tree and shrub seedling diversity (species richness and Shannon diversity) fell significantly between 2005 and 2007 and remained significantly lower than 2005 in 2009, driven both by significantly higher species loss and lower recruitment of new species following the 2005 drought. Liana density and diversity, in contrast, increased in both time periods, allowing lianas to maintain a positive rate of population change because lianas had lower mortality immediately post-drought compared to tree and shrub seedlings. Comparing my results with those of published seedling density values in 1991 indicates an astounding decline in tree seedling density and increase in liana percentage over the intervening 14 years in fragments, which I hypothesize is driven by the high tree seedling mortality but unchanged liana mortality that I documented following the 2005 drought. This increasing proportion of lianas in relation to trees is considered one of the ten key fingerprints of global environmental change in neotropical forest, and my results are the first to indicate that differential mortality of tree compared to liana seedlings following drought may be a primary driver of this phenomena. Since lianas enhance adult tree mortality risk, my results suggest that conservation prescriptions trying to avert the negative effects of climate change on neotropical forest structure must include liana control in both fragments and continuous forest while simultaneously trying to promote tree seedling recruitment following drought by increasing connectivity in fragmented landscapes.
机译:亚马孙州是最大,生物多样性最强的热带森林,约占地球陆地物种的25%。砍伐森林和随之而来的森林破碎化已将完整的亚马逊雨林减少到其原始范围的80%,威胁到这种生物多样性。森林破碎化对亚马逊森林成年树多样性的负面影响已有充分的文献记载,但是,森林破碎化如何影响森林再生的多样性和组成仍然未知。我的论文研究的第一章探讨了碎片面积对巴西马瑙斯附近的亚马逊中部实验性片段化景观中树木和灌木幼苗再生的多样性的影响。为此,我在碎片中心(1公顷,10公顷,100公顷)和森林连续控制区划出了104个子图样,每个图样的面积为10平方米,标记并确定了这些子图样中遇到的所有幼苗,并确定了片段大小的密度,物种丰富度,香农多样性,Fisher的α多样性,系统发育多样性,系统发育的群落结构和物种积累。结果表明,树木幼苗密度(3x),物种丰富度(2x),香农多样性,Fisher's与连续森林相比,小碎片(≤10公顷)的阿尔法多样性和系统发育多样性,而大碎片(100公顷)具有中等密度和多样性。连续森林中的累积物种丰富度最高,并且随着碎片面积而显着下降,这表明区域多样性也受到碎片的负面影响。系统发育群落结构在碎片中也发生了显着变化:连续森林的最终系统发育聚类特征在森林碎片中消失了。由于当今森林碎片的更新方式反映了它们在未来的多样性持久性潜力,这些结果表明,在零散的亚马逊森林中,未来的森林组合将在局部和景观尺度上变得贫困,尤其是在小碎片中,这表明对大块地的保护连续原始森林的数量应该仍然是保护的重点。在缺乏连续森林的地区,我的研究结果表明,生物多样性的保留潜力从大碎片到小碎片呈梯度变化,这表明保护工作应优先保护大碎片,而小碎片也可以在景观水平上作为部分生物多样性库发挥重要的保护作用。 ;为了维持景观的连通性,并为将来在邻近牧场恢复树木和灌木的多样性提供便利。为了了解幼苗再生的时间动态,包括2005年气候变化造成的灾难性干旱的影响,我的第二章探讨了在三个时期内树木,灌木和藤本植物的幼苗密度和多样性发生变化,并且记录了驱动幼苗密度和多样性变化的募集和死亡动态。我标记了68个子图中所有树木,灌木和藤本植物的幼苗,在2005年9月22日至2006年8月9日之间每个面积为10平方米(2005年人口普查),并在2007年10月5日至7 / 21/2008(2007年人口普查),再一次是5/13/2009-6/21/2009(2009年人口普查)。我测试了片段大小(1公顷,10公顷,100公顷,连续森林),时间段(2005年,2007年,2009年)或它们之间的相互作用是否显着影响了幼苗的密度,物种丰富度,香农多样性和费舍尔的α多样性,我还确定了这些因素对两个时期(2005-2007、2007-2009)的幼苗招募,死亡率,周转率和种群变化的影响。; 2005年至2007年之间树木和灌木幼苗的多样性(物种丰富度和香农多样性)显着下降且由于2005年干旱后物种损失明显增加和新物种募集量减少,这在2009年仍大大低于2005年。相比之下,藤本植物的密度和多样性在两个时期都增加了,这使得藤本植物能够保持正的种群变化率,因为相比于树木和灌木苗,藤本植物在干旱后立即具有较低的死亡率。将我的结果与1991年公布的幼苗密度值进行比较,可以看出在过去的14年中,碎片中树木幼苗密度的惊人下降和藤本植物百分比的增加,我认为这是由高树苗死亡率驱动的,而藤本植物死亡率却保持不变,记录在2005年干旱之后。藤本植物相对于树木的比例不断增加被认为是新热带森林全球环境变化的十个关键特征之一,我的研究结果首次表明干旱后树木与藤本植物幼苗相比的不同死亡率可能是造成干旱的主要原因。这种现象。由于藤本植物会增加成年树木死亡的风险,我的研究结果表明,试图避免气候变化对新热带森林结构产生负面影响的保护措施,必须包括对碎片和连续森林的藤本植物控制,同时尝试通过增加碎片化景观的连通性来促进干旱后树木苗的募集。

著录项

  • 作者

    Hooper, Elaine Rosamond.;

  • 作者单位

    Yale University.;

  • 授予单位 Yale University.;
  • 学科 Ecology.;Conservation biology.;Biology.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 242 p.
  • 总页数 242
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号