首页> 外文学位 >Characterization of Single Phase and Two Phase Heat and Momentum Transport in a Spiraling Radial Inow Microchannel Heat Sink.
【24h】

Characterization of Single Phase and Two Phase Heat and Momentum Transport in a Spiraling Radial Inow Microchannel Heat Sink.

机译:螺旋状径向微通道散热器中单相和两相热和动量传输的特性。

获取原文
获取原文并翻译 | 示例

摘要

Thermal management of systems under high heat fluxes on the order of hundreds of W/cm2 is important for the safety, performance and lifetime of devices, with innovative cooling technologies leading to improved performance of electronics or concentrating solar photovoltaics. A novel, spiraling radial inflow microchannel heat sink for high flux cooling applications, using a single phase or vaporizing coolant, has demonstrated enhanced heat transfer capabilities. The design of the heat sink provides an inward swirl flow between parallel, coaxial disks that form a microchannel of 1 cm radius and 300 micron channel height with a single inlet and a single outlet. The channel is heated on one side through a conducting copper surface, and is essentially adiabatic on the opposite side to simulate a heat sink scenario for electronics or concentrated photovoltaics cooling. Experimental results on the heat transfer and pressure drop characteristics in the heat sink, using single phase water as a working fluid, revealed heat transfer enhancements due to flow acceleration and induced secondary flows when compared to unidirectional laminar fully developed flow between parallel plates. Additionally, thermal gradients on the surface are small relative to the bulk fluid temperature gain, a beneficial feature for high heat flux cooling applications. Heat flux levels of 113 W/cm2 at a surface temperature of 77 deg C were reached with a ratio of pumping power to heat rate of 0.03%. Analytical models on single phase flow are used to explore the parametric trends of the flow rate and passage geometry on the streamlines and pressure drop through the device.;Flow boiling heat transfer and pressure drop characteristics were obtained for this heat sink using water at near atmospheric pressure as the working fluid for inlet subcooling levels ranging from 20 to 80 deg C and mean mass flux levels ranging from 184-716 kg/m.;2s. Flow enhancements similar to singlephase flow were expected, as well as enhancements due to increased buoyant forces on vapor bubbles resulting from centripetal acceleration in the flow which will tend to draw the vapor towards the outlet. This can also aid in the reduction of vapor obstruction of the flow. The flow was identified as transitioning through three regimes as the heat rate was increased: partial subcooled flow boiling, oscillating boiling and fully developed flow boiling. During partial subcooled flow boiling, both forced convective and nucleate boiling effects are important. During oscillating boiling, the system fluctuated between partial subcooled flow boiling and fully developed nucleate boiling. Temperature and pressure oscillations were significant in this regime and are likely due to bubble constriction of flow in the microchannel. This regime of boiling is generally undesirable due to the large oscillations in temperatures and pressure and design constraints should be established to avoid large oscillations from occurring. During fully developed flow boiling, water vapor rapidly leaves the surface and the flow does not sustain large oscillations. Reducing inlet subcooling levels was found to reduce the magnitude of oscillations in the oscillating boiling regime. Additionally, reduced inlet subcooling levels reduced the average surface temperature at the highest heat flux levels tested when heat transfer was dominated by nucleate boiling, yet increased the average surface temperatures at low heat flux levels when heat transfer was dominated by forced convection. Experiments demonstrated heat fluxes up to 301 W/cm.;2at an average surface temperature of 134 deg C under partial subcooled flow boiling conditions. At this peak heat flux, the system required a pumping power to heat rate ratio of 0.01%. This heat flux is 2.4 times the typical values for critical heat flux in pool boiling under similar conditions.
机译:在数百W / cm2量级的高热通量下,系统的热管理对于设备的安全性,性能和使用寿命非常重要,创新的冷却技术可改善电子设备的性能或聚光太阳能光伏。使用单相或汽化冷却剂的用于高通量冷却应用的新型螺旋状径向流入微通道散热器具有增强的传热能力。散热器的设计在平行的同轴圆盘之间提供了向内的旋流,该同轴的圆盘形成了半径为1 cm,通道高度为300微米的微通道,并具有单个入口和单个出口。通道的一侧通过导电的铜表面加热,而另一侧的通道基本上是绝热的,以模拟用于电子设备或集中光伏电池冷却的散热器情况。使用单相水作为工作流体的散热器传热和压降特性的实验结果表明,与平行板之间的单向层流完全展开流相比,由于流动加速和引起的二次流,传热增强。另外,相对于整体流体温度增益,表面上的热梯度较小,这对高热通量冷却应用是有利的。在表面温度为77℃的情况下,热通量达到113 W / cm2,泵浦功率与加热速率之比为0.03%。使用单相流的分析模型来探索流线上的流速和通道几何形状以及通过设备的压降的参数趋势。;在接近大气的情况下,使用该水获得了该散热器的流沸腾传热和压降特性入口过冷度为20至80摄氏度,平均质量通量为184-716 kg / m。; 2s时作为工作流体的压力。可以预期类似于单相流的流量增强,以及由于流中的向心加速度而导致的蒸气气泡上浮力增加的增强,这会倾向于将蒸气拉向出口。这也可以帮助减少气流的蒸气阻塞。随着热量速率的增加,该流动被确定为通过三种方式转变:部分过冷流动沸腾,振荡沸腾和充分发展的流动沸腾。在部分过冷流沸腾过程中,强制对流和成核沸腾效应都很重要。在振荡沸腾过程中,系统在部分过冷流沸腾和完全发展的核沸腾之间波动。在这种情况下,温度和压力振荡很明显,可能是由于微通道中气泡的收缩所致。由于温度和压力的大波动,这种沸腾方式通常是不希望的,因此应建立设计约束以避免大的振荡发生。在充分发展的水流沸腾过程中,水蒸气会迅速离开表面,水流不会维持较大的振荡。发现降低进口过冷度可降低振荡沸腾状态下的振荡幅度。另外,当通过核对沸腾控制热传递时,降低的入口过冷度会降低在测试的最高热通量水平下的平均表面温度,而在通过强制对流控制热传递时会降低低热通量下的平均表面温度。实验表明,在部分过冷流沸腾条件下,平均表面温度为134摄氏度时,热通量高达301 W / cm.2。在此峰值热通量下,系统要求泵送功率与热量的比率为0.01%。在相似条件下,该热通量是池沸腾临界热通量典型值的2.4倍。

著录项

  • 作者

    Ruiz, Maritza.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Engineering Mechanical.;Energy.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 144 p.
  • 总页数 144
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号