首页> 外文学位 >Mitochondrial Calcium Regulation In Cardiac Myocytes: Local Gradients Of Intra-Mitochondrial Calcium, Mitochondrial Calcium Uniporter And Permeability Transition Pore-Mediated Calcium Homeostasis
【24h】

Mitochondrial Calcium Regulation In Cardiac Myocytes: Local Gradients Of Intra-Mitochondrial Calcium, Mitochondrial Calcium Uniporter And Permeability Transition Pore-Mediated Calcium Homeostasis

机译:心肌细胞中的线粒体钙调节:线粒体内钙,线粒体钙单向转运蛋白的局部梯度和通透性转变介导的钙稳态

获取原文
获取原文并翻译 | 示例

摘要

[Ca2+]mito regulates mitochondrial energy production, provides transient Ca2+ buffering under stress, and can be involved in cell death. Mitochondria are near the sarcoplasmic reticulum (SR) in cardiac myocytes, and evidence for crosstalk exists. However, quantitative measurements of Ca2+]mito are limited, and spatial Ca2+]mito gradients have not been directly measured. To directly measure local Ca2+]mito during normal SR Ca release in intact myocytes, and evaluate potential subsarcomeric spatial Ca2+]mito gradients.;Methods and Results: Using the mitochondrially targeted inverse pericam indicator Mitycam, calibrated in situ, we directly measured Ca2+] mito during SR Ca release in intact rabbit ventricular myocytes by confocal microscopy. During steady state pacing, Ca2+]mito amplitude was 29+/-3 nM, rising rapidly (similar to cytosolic free [Ca 2+]) but declining much more slowly. Taking advantage of the structural periodicity of cardiac sarcomeres, we found that Ca2+] mito near SR Ca2+ release sites (Z-line) versus mid-sarcomere (M-line) reached a high peak amplitude (37+/-4 versus 26+/-4 nM, respectively P<0.05) which occurred earlier in time. This difference was attributed to ends of mitochondria being physically closer to SR Ca release sites, because the mitochondrial Ca2+ uniporter was homogeneously distributed, and elevated [Ca2+] applied laterally did not produce longitudinal Ca2+]mito gradients. We developed methods to measure spatiotemporal Ca2+]mito gradients quantitatively during excitation--contraction coupling. The amplitude and kinetics of Ca2+]mito transients differ significantly from those in the cytosol and are within the mitochondria respectively higher and faster near the Z-line versus M-line. This approach will help clarify SR-mitochondrial Ca2+ signaling.;Mitochondria are strategically positioned in cell to coordinate ATP production with metabolic demand. In the beat-to-beat heart, mitochondrial Ca 2+ load is the critical factor tuning the bioenergetics. However, the pathological condition of mitochondrial Ca2+ overload, which can occur after stressful situations such as after ischemic injury, can trigger mitochondrial permeability transition pore (mPTP) opening and cardiomyocyte death. Mitochondrial calcium uniporter (MCU) has been proposed as a predominant pathway of mitochondrial Ca2+ uptake. However, in cardiac myocytes, the actual pathway of mitochondrial Ca2+ uptake and mitochondrial Ca2+ buffering capacity are still under debate in both physiological and pathological conditions. To test the functional role of MCU in the heart, our collaborators (Dr. Molkentin's lab) generated a genetic mouse model with inducible and cardiomyocyte-specific deletion of this gene. As expected, mitochondria from cardiac-specific Mcu-deleted mice were refractory to acute Ca2+ uptake without affecting the cytosolic Ca2+ homeostasis during the normal SR Ca 2+ cycle. These mice in the adult heart were also protected from acute ischemia-reperfusion injury. Resting mitochondrial Ca2+ levels were normal in hearts of Mcu-deleted mice, and Mcu-deleted mice did not show a cardiac phenotype with up to 1 year of aging. These results suggest that the MCU is not required for long-term mitochondrial Ca2+ homeostasis but instead serves as a "fight-or-flight" mediator.;Mitochondria produce most cellular ATP, and are especially critical for survival of highly aerobic cells such as cardiac myocytes and neurons. Opening of high-conductance and long-lasting mitochondrial permeability transition pores (mPTP) causes uncoupling of respiration, mitochondrial injury and cell death. Conversely, low-conductance and transient mPTP openings (tPTP) have been proposed to limit mitochondrial Ca2+ load and be cardioprotective, but direct evidence for tPTP in cells is limited. Here, we measured tPTP directly as transient drops in mitochondrial [Ca2+] (Ca2+] mito) and membrane potential (DeltaPsim) in adult cardiac myocytes during cyclical sarcoplasmic reticulum Ca2+ release, by simultaneous live imaging of 500-1,000 individual mitochondria. The frequency of tPTPs rose at higher Ca2+]mito, [Ca2+]i, with 1 microM peroxide exposure and in myocyte from failing hearts. The tPTPs were suppressed by preventing mitochondrial Ca2+ influx, by mPTP inhibitor cyclosporine A (CsA) and in cyclophilin D knockout mice.;These tPTP events average 57 +/- 5 s in duration, but were rare (occurring in <0.1% of the cell's mitochondria at any moment) such that the overall energetic cost to the cell is minimal. The tPTP pore size is much smaller than for permanent mPTP, as neither Rhod-2 nor calcien (600 Da) were lost. Thus, proteins and even molecules the size of NADH (663 Da) will be retained during these tPTP. We conclude that tPTP openings (MitoWinks) may be molecularly related to pathological mPTP, but are likely to be physiologically beneficial to mitochondrial (and cell) survival by allowing individual mitochondria to reset themselves with little overall energetic cost.
机译:[Ca2 +] mito调节线粒体能量产生,在压力下提供短暂的Ca2 +缓冲作用,并可能参与细胞死亡。线粒体靠近心肌细胞的肌浆网(SR),并且存在串扰的证据。但是,Ca2 +] mito的定量测量是有限的,并且空间Ca2 +] mito梯度尚未直接测量。要直接测量正常SR在完整肌细胞中Ca释放过程中的局部Ca2 +] mito,并评估潜在的肌下亚空间Ca2 +] mito梯度。;方法和结果:使用线粒体靶向逆周膜示象剂Mitycam,在原位校准,我们直接测量了Ca2 +] mito共聚焦显微镜观察完整的兔心室肌细胞中SR Ca释放的​​过程在稳态起搏过程中,Ca2 +] mito振幅为29 +/- 3 nM,迅速上升(类似于无胞浆的[Ca 2+]),但下降得慢得多。利用心脏肉瘤的结构周期性,我们发现SR附近的Ca2 +] mito Ca2 +释放位点(Z线)与中肌小节(M线)达到了较高的峰值幅度(37 +/- 4 vs 26 + / -4 nM,分别为P <0.05),其发生时间较早。这种差异归因于线粒体的末端在物理上更接近SR Ca释放位点,因为线粒体Ca2 +单向均匀分布,并且横向施加的[Ca2 +]升高不会产生纵向Ca2 +] mito梯度。我们开发了在激励-收缩耦合过程中定量测量时空Ca2 +] mito梯度的方法。 Ca2 +] mito瞬变的幅度和动力学与胞浆中的瞬变幅度和动力学有显着差异,并且在线粒体内分别在Z线和M线附近更高和更快。这种方法将有助于阐明SR线粒体Ca2 +信号传导。线粒体被战略性地定位在细胞中,以协调ATP的产生与代谢的需求。在逐搏心脏中,线粒体Ca 2+负荷是调节生物能的关键因素。但是,线粒体Ca2 +超载的病理状况(在缺血性损伤后等应激情况下可能发生)会触发线粒体通透性转换孔(mPTP)打开和心肌细胞死亡。线粒体钙单向转运蛋白(MCU)被认为是线粒体Ca2 +吸收的主要途径。然而,在心肌细胞中,在生理和病理条件下,线粒体Ca 2+摄取和线粒体Ca 2+缓冲能力的实际途径仍在争论中。为了测试MCU在心脏中的功能,我们的合作者(莫尔金汀博士的实验室)生成了具有可诱导的心肌细胞特异性缺失基因的遗传小鼠模型。如预期的那样,在正常的SR Ca 2+周期中,来自心脏特异性Mcu缺失小鼠的线粒体对急性Ca2 +吸收是难治的,而不会影响胞质Ca2 +稳态。成年心脏中的这些小鼠也受到保护,免受急性缺血-再灌注损伤。在Mcu缺失的小鼠心脏中,线粒体Ca2 +的静息水平正常,而在Mcu缺失的小鼠中,其衰老期长达1年也未显示其心脏表型。这些结果表明,MCU不需要长期的线粒体Ca2 +稳态,而起着“战斗或逃跑”的作用。线粒体产生大多数细胞ATP,对于高耗氧细胞(例如心脏)的存活特别重要肌细胞和神经元。高电导率和持久的线粒体通透性过渡孔(mPTP)的开放会导致呼吸,线粒体损伤和细胞死亡解偶联。相反,已经提出了低电导和瞬时mPTP开口(tPTP)来限制线粒体Ca2 +负载并具有心脏保护作用,但细胞中tPTP的直接证据有限。在这里,我们通过同时实时成像500-1,000个单独的线粒体,直接测量了成年心肌细胞中线粒体[Ca2 +](Ca2 +] mito的瞬时下降和膜电位(DeltaPsim)的瞬时下降,tPTP是成年心肌细胞中的瞬时下降。 tPTP的频率在较高的Ca2 +] mito,[Ca2 +] i,1 microM过氧化物暴露以及心脏衰竭的心肌细胞中升高。通过预防线粒体Ca2 +流入,mPTP抑制剂环孢菌素A(CsA)和亲环蛋白D基因敲除小鼠抑制了tPTP;这些tPTP事件的平均持续时间为57 +/- 5 s,但很少见(发生率<0.1%细胞的线粒体),从而使细胞的整体能量消耗降至最低。 tPTP孔径比永久性mPTP小得多,因为Rhod-2和钙化素(600 Da)都没有丢失。因此,在这些tPTP期间将保留蛋白质甚至NADH(663 Da)大小的分子。我们得出结论,tPTP开口(MitoWinks)可能与病理性mPTP分子相关,但通过允许单个线粒体以很少的整体精力消耗来重置自身,可能对线粒体(和细胞)的生存具有生理上的益处。

著录项

  • 作者

    Lu, Xiyuan.;

  • 作者单位

    University of California, Davis.;

  • 授予单位 University of California, Davis.;
  • 学科 Physiology.;Pharmacology.;Molecular biology.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 97 p.
  • 总页数 97
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号