首页> 外文学位 >Design and development of non-linear optical microscopy, data acquisition and analysis techniques.
【24h】

Design and development of non-linear optical microscopy, data acquisition and analysis techniques.

机译:非线性光学显微镜,数据采集和分析技术的设计与开发。

获取原文
获取原文并翻译 | 示例

摘要

The ability to perform in vivo real-time diagnostics in both the research and clinical settings is of interest in the respective communities. Current methods require biopsy followed by histopathology, often requiring complex and time consuming sample preparation (i.e. sectioning, staining). These time consuming steps add several complications including obfuscation of the inherent information of interest through preparation techniques. However, perhaps the most significant shortcoming in these techniques is the inability to observe and quantify dynamic processes in the living system.;Second harmonic generation (SHG) and other nonlinear optical beam scanning techniques has seen rapid recent development as a fast, non-destructive and quantitative method for in vivo imaging. The major limitation of SHG microscopy and similar techniques is ultimately the signal-to-noise (S/N) in these imaging techniques. With sufficient S/N real-time, video rate, SHG microscopy can be performed to gather insight into living systems as they evolve over time. In pursuit of this goal, fast data acquisition techniques were developed to improve the S/N and imaging speed in SHG microscopy. Methods for enhancing the S/N were developed in modulated signal configurations using digital -in amplifications techniques in SHG microscopy. Additionally, digital filtering techniques were developed to remove significant noise from the raw signal before producing micrographs to greatly enhance the S/N in situations of high noise and uncertainty. Using novel scanning techniques and model based image reconstruction, SHG microscopy was pushed into the kilohertz imaging regime. Additionally, polarization dependent SHG microscopy methods were developed to provide additional structural information at video-rate speeds.
机译:在研究和临床环境中进行体内实时诊断的能力在各个社区中都受到关注。当前的方法需要活检然后进行组织病理学检查,通常需要复杂且费时的样品制备(即切片,染色)。这些耗时的步骤增加了一些复杂性,包括通过准备技术来混淆感兴趣的固有信息。但是,这些技术中最显着的缺点可能是无法观察和量化生命系统中的动态过程。二次谐波生成(SHG)和其他非线性光束扫描技术已将近来的快速发展视为一种快速,无损的技术体内成像的定量方法。 SHG显微镜和类似技术的主要局限性最终是这些成像技术中的信噪比(S / N)。借助足够的S / N实时视频速率,可以进行SHG显微镜检查,以随着生命系统的发展而深入了解生命系统。为了实现这一目标,开发了快速数据采集技术以提高SHG显微镜的信噪比和成像速度。在SHG显微镜中使用数字放大技术在调制信号配置中开发了增强S​​ / N的方法。此外,开发了数字滤波技术以在产生显微照片之前从原始信号中去除大量噪声,从而在高噪声和不确定性情况下极大地提高了信噪比。使用新颖的扫描技术和基于模型的图像重建,SHG显微镜被推入千赫兹成像领域。此外,开发了偏振相关的SHG显微镜方法,以视频速率提供额外的结构信息。

著录项

  • 作者

    Sullivan, Shane Z.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Physical chemistry.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 162 p.
  • 总页数 162
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号