首页> 外文学位 >The determination of impurity concentrations and activation energies from Hall measurement data.
【24h】

The determination of impurity concentrations and activation energies from Hall measurement data.

机译:根据霍尔测量数据确定杂质浓度和活化能。

获取原文
获取原文并翻译 | 示例

摘要

An algorithm was developed to perform least squares fitting of Hall measurement data in order to determine the underlying impurity concentrations and activation energies causing the observed carrier concentrations. The algorithm is different than other methods currently used because it models the Fermi energy as function of temperature only. The Fermi energy model allows the algorithm to not make any assumptions about the doping levels of the semiconductor being studied, so the algorithm is completely general for both degenerate and non-degenerate semiconductors.;The least squares fitting takes place in three steps. First, a functional approximation for the Fermi energy is calculated which depends only on temperature. The second step is to generate an initial estimate using the calculated Fermi energy. The third step for the algorithm is an iterative process. The impurity concentrations and activation energies are updated using a group coordinate descent. That is, in alternate steps, the activation energies are held fixed while the concentration values are updated, then the impurity concentrations are held fixed while the activation energy values are updated. The update process continues as long as the new values result in a better fit to the Hall data than the current values.;The algorithm was implemented as a 7,000 line extensible, self-contained, stand-alone application written in ISO standard C. Therefore, the C source code is fully portable. The implementation did not make use of any preexisting code or mathematical libraries in order to keep the application free of any license or use restrictions.
机译:开发了一种算法来执行霍尔测量数据的最小二乘拟合,以确定潜在的杂质浓度和引起观察到的载流子浓度的活化能。该算法与当前使用的其他方法不同,因为它仅将费米能量建模为温度的函数。费米能量模型允许该算法不对正在研究的半导体的掺杂水平做出任何假设,因此该算法对于退化和非退化半导体都是完全通用的。最小二乘拟合发生在三个步骤中。首先,计算费米能量的函数近似值,该函数近似值仅取决于温度。第二步是使用计算出的费米能量生成初始估计值。该算法的第三步是一个迭代过程。杂质浓度和活化能通过群坐标下降来更新。即,在交替的步骤中,在更新浓度值的同时使活化能保持固定,然后在更新活化能的值时使杂质浓度保持固定。只要新值产生的霍尔数据比当前值更适合霍尔数据,更新过程就会继续。该算法被实现为以ISO标准C编写的7,000行可扩展,自包含,独立的应用程序。 ,C源代码是完全可移植的。该实现没有利用任何预先存在的代码或数学库来使应用程序不受任何许可或使用限制。

著录项

  • 作者

    Jackson, Aaron.;

  • 作者单位

    Howard University.;

  • 授予单位 Howard University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 163 p.
  • 总页数 163
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号