首页> 外文学位 >Novel concepts in near-field optics: from magnetic near-field to optical forces.
【24h】

Novel concepts in near-field optics: from magnetic near-field to optical forces.

机译:近场光学的新概念:从磁场近场到光学力。

获取原文
获取原文并翻译 | 示例

摘要

Driven by the progress in nanotechnology, imaging and spectroscopy tools with nanometer spatial resolution are needed for in situ material characterizations. Near-field optics provides a unique way to selectively excite and detect elementary electronic and vibrational interactions at the nanometer scale, through interactions of light with matter in the near-field region. This dissertation discusses the development and applications of near-field optical imaging techniques, including plasmonic material characterization, optical spectral nano-imaging and magnetic field detection using scattering-type scanning near-field optical microscopy (s-SNOM), and exploring new modalities of optical spectroscopy based on optical gradient force detection.;Firstly, the optical dielectric functions of one of the most common plasmonic materials---silver is measured with ellipsometry, and analyzed with the Drude model over a broad spectral range from visible to mid-infrared. This work was motivated by the conflicting results of previous measurements, and the need for accurate values for a wide range of applications of silver in plasmonics, optical antennas, and metamaterials. This measurement provides a reference for dielectric functions of silver used in metamaterials, plasmonics, and nanophotonics.;Secondly, I implemented an infrared s-SNOM instrument for spectroscopic nano-imaging at both room temperature and low temperature. As one of the first cryogenic s-SNOM instruments, the novel design concept and key specifications are discussed. Initial low-temperature and high-temperature performances of the instrument are examined by imaging of optical conductivity of vanadium oxides (VO2 and V2O 3) across their phase transitions. The spectroscopic imaging capability is demonstrated on chemical vibrational resonances of Poly(methyl methacrylate) (PMMA) and other samples.;The third part of this dissertation explores imaging of optical magnetic fields. As a proof-of-principle, the magnetic near-field response of a linear rod antenna is studied with Babinet's principle. Babinet's principle connects the magnetic field of a structure to the electric field of its complement structure. Using combined far- and near-field spectroscopy, imaging, and theory, I identify magnetic dipole and higher order bright and dark magnetic resonances at mid-infrared frequencies. From resonant length scaling and spatial field distributions, I confirm that the theoretical requirement of Babinet's principle for a structure to be infinitely thin and perfectly conducting is still fulfilled to a good approximation in the mid-infrared. Thus Babinet's principle provides access to spatial and spectral magnetic field properties, leading to targeted design and control of magnetic optical antennas.;Lastly, a novel form of nanoscale optical spectroscopy based on mechanical detection of optical gradient force is explored. It is to measure the optical gradient force between induced dipole moments of a sample and an atomic force microscope (AFM) tip. My study provides the theoretical basis in terms of spectral behavior, resonant enhancement, and distance dependence of the optical gradient force from numerical simulations for a coupled nanoparticle model geometry. I show that the optical gradient force is dispersive for local electronic and vibrational resonances, yet can be absorptive for collective polaronic excitations. This spectral behavior together with the distance dependence scaling provides the key characteristics for its measurement and distinction from competing processes such as thermal expansion. Furthermore, I provide a perspective for resonant enhancement and control of optical forces in general.
机译:随着纳米技术的进步,原位材料表征需要具有纳米空间分辨率的成像和光谱学工具。近场光学器件提供了一种独特的方法,可以通过光与近场区域中物质的相互作用,选择性地激发和检测纳米级的基本电子和振动相互作用。本文讨论了近场光学成像技术的发展和应用,包括等离子体材料表征,光谱纳米成像和散射型扫描近场光学显微镜(s-SNOM)的磁场检测,并探索了新型的成像技术。基于光学梯度力检测的光学光谱学;首先,使用椭圆偏振法测量最常见的等离子体材料-银的光学介电功能,并使用Drude模型在从可见光到中红外的宽光谱范围内进行分析。这项工作是由于先前的测量结果相互矛盾,以及在等离子电子,光学天线和超材料中广泛应用银的准确值的需要。该测量结果为超材料,等离激元和纳米光子学中使用的银的介电功能提供了参考。其次,我实现了红外s-SNOM仪器,用于在室温和低温下对纳米成像进行光谱分析。作为最早的低温s-SNOM仪器之一,讨论了新颖的设计概念和关键规格。通过对钒氧化物(VO2和V2O 3)在其相变过程中的光导率进行成像,可以检查该仪器的初始低温和高温性能。通过对聚甲基丙烯酸甲酯(PMMA)和其他样品的化学振动共振,证明了其光谱成像能力。本论文的第三部分探讨了光磁场的成像。作为原理的证明,采用巴比涅原理研究线性杆状天线的近场响应。巴比涅原理将结构的磁场与其互补结构的电场联系起来。使用组合的远场和近场光谱学,成像和理论,我确定了中红外频率下的磁偶极子和高阶明暗磁共振。从谐振长度定标和空间场分布来看,我确认巴比涅原理对于结构无限薄且传导完美的理论要求在中红外方面仍可以很好地满足。因此,Babinet原理提供了访问空间和频谱磁场特性的途径,从而有针对性地设计和控制了磁光天线。最后,探索了一种基于机械检测光梯度力的新型纳米级光谱学。它用于测量样品的感应偶极矩和原子力显微镜(AFM)尖端之间的光学梯度力。我的研究为耦合纳米粒子模型几何形状的数值模拟提供了光谱行为,共振增强和光学梯度力的距离依赖性方面的理论基础。我表明,光学梯度力对于局部电子共振和振动共振具有分散性,但对于集体极化子激发却可以吸收。这种光谱行为以及距离相关性缩放比例为测量和与竞争过程(例如热膨胀)的区别提供了关键特性。此外,我提供了总体上增强共振和控制光学力的观点。

著录项

  • 作者

    Yang, Honghua.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Nanoscience.;Optics.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 146 p.
  • 总页数 146
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号